Topsis-Aaditya-102117021


NameTopsis-Aaditya-102117021 JSON
Version 0.0.4 PyPI version JSON
download
home_page
SummaryImplementing TOPSIS
upload_time2024-01-26 17:24:29
maintainer
docs_urlNone
authorintrinsicvardhan (Aaditya Vardhan)
requires_python
license
keywords topsis decision-analysis similarity
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)

## Table of Contents

1. [Description](#description)
2. [Installation](#installation)
3. [Usage](#usage)
4. [Example](#example)

## Description

### Topsis-Aaditya-102117021

*for: Project-1(UCS654) submitted-by: **Aaditya Vardhan** Roll no: **102117021** Group: **3CS-1***

Topsis-Aaditya-102117021 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)

## Installation

Use the package manager **pip** to install Topsis-Aaditya-102117021

`pip install Topsis-Aaditya-102117021`

## Usage

Enter csv filename followed by *.csv* extension, then enter the *weights* vector with vector values separated by commas, followed by the *impacts* vector with comma-separated signs *(+,-)*

```bash
python sample.py sample.csv "1,1,1,1,2" "+,+,-,+,+" sample-result.csv
```

## Example

### sample.csv

A csv file showing data for different mobile handsets having varying features

| Model | Storage space (in GB) | Camera (in MP) | Price (in $) | Looks (out of 5) |
|-------|------------------------|-----------------|---------------|------------------|
| M1    | 16                     | 12              | 250           | 5                |
| M2    | 16                     | 8               | 200           | 3                |
| M3    | 32                     | 16              | 300           | 4                |
| M4    | 32                     | 8               | 275           | 4                |
| M5    | 16                     | 16              | 225           | 2                |

weights vector = [1, 1, 1, 1]
impacts vector = [+,+,-,+]

### input:

`python sample.py sample.csv "1,1,1,1" "+,+,-,+" sample-result.csv`

### output:

|   Topsis-score   | Rank |
|-------------|------|
| 0.534277    | 3    |
| 0.308368    | 5    |
| 0.691632    | 1    |
| 0.534737    | 2    |
| 0.401046    | 4    |







            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Aaditya-102117021",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "topsis,decision-analysis,similarity",
    "author": "intrinsicvardhan (Aaditya Vardhan)",
    "author_email": "intrinsicvardhan@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f8/22/0855ee7a99424358ee11f0d4dce61fa142aa00e86b57b06f7bc9e644a137/Topsis-Aaditya-102117021-0.0.4.tar.gz",
    "platform": null,
    "description": "# TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)\r\n\r\n## Table of Contents\r\n\r\n1. [Description](#description)\r\n2. [Installation](#installation)\r\n3. [Usage](#usage)\r\n4. [Example](#example)\r\n\r\n## Description\r\n\r\n### Topsis-Aaditya-102117021\r\n\r\n*for: Project-1(UCS654) submitted-by: **Aaditya Vardhan** Roll no: **102117021** Group: **3CS-1***\r\n\r\nTopsis-Aaditya-102117021 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)\r\n\r\n## Installation\r\n\r\nUse the package manager **pip** to install Topsis-Aaditya-102117021\r\n\r\n`pip install Topsis-Aaditya-102117021`\r\n\r\n## Usage\r\n\r\nEnter csv filename followed by *.csv* extension, then enter the *weights* vector with vector values separated by commas, followed by the *impacts* vector with comma-separated signs *(+,-)*\r\n\r\n```bash\r\npython sample.py sample.csv \"1,1,1,1,2\" \"+,+,-,+,+\" sample-result.csv\r\n```\r\n\r\n## Example\r\n\r\n### sample.csv\r\n\r\nA csv file showing data for different mobile handsets having varying features\r\n\r\n| Model | Storage space (in GB) | Camera (in MP) | Price (in $) | Looks (out of 5) |\r\n|-------|------------------------|-----------------|---------------|------------------|\r\n| M1    | 16                     | 12              | 250           | 5                |\r\n| M2    | 16                     | 8               | 200           | 3                |\r\n| M3    | 32                     | 16              | 300           | 4                |\r\n| M4    | 32                     | 8               | 275           | 4                |\r\n| M5    | 16                     | 16              | 225           | 2                |\r\n\r\nweights vector = [1, 1, 1, 1]\r\nimpacts vector = [+,+,-,+]\r\n\r\n### input:\r\n\r\n`python sample.py sample.csv \"1,1,1,1\" \"+,+,-,+\" sample-result.csv`\r\n\r\n### output:\r\n\r\n|   Topsis-score   | Rank |\r\n|-------------|------|\r\n| 0.534277    | 3    |\r\n| 0.308368    | 5    |\r\n| 0.691632    | 1    |\r\n| 0.534737    | 2    |\r\n| 0.401046    | 4    |\r\n\r\n\r\n\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Implementing TOPSIS",
    "version": "0.0.4",
    "project_urls": null,
    "split_keywords": [
        "topsis",
        "decision-analysis",
        "similarity"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "87356caf44dff2707bc54e5a88724c5692dbcd8f1c48f32df31e0b87dc7cf662",
                "md5": "918f36eeba76cad9cad6d79e51ebc755",
                "sha256": "be04144699c6311f99acde258ab9f0e5e2f7fdc7c035502cfa9b59d614099619"
            },
            "downloads": -1,
            "filename": "Topsis_Aaditya_102117021-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "918f36eeba76cad9cad6d79e51ebc755",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3800,
            "upload_time": "2024-01-26T17:24:26",
            "upload_time_iso_8601": "2024-01-26T17:24:26.119950Z",
            "url": "https://files.pythonhosted.org/packages/87/35/6caf44dff2707bc54e5a88724c5692dbcd8f1c48f32df31e0b87dc7cf662/Topsis_Aaditya_102117021-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f8220855ee7a99424358ee11f0d4dce61fa142aa00e86b57b06f7bc9e644a137",
                "md5": "0fede107fdb1ce7ba1513468f59fd4d6",
                "sha256": "f0ca08c1cbf9825d7594e87bb3ba4e1a2d15d4a7a1351f1a00db7c460a7babe5"
            },
            "downloads": -1,
            "filename": "Topsis-Aaditya-102117021-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "0fede107fdb1ce7ba1513468f59fd4d6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3562,
            "upload_time": "2024-01-26T17:24:29",
            "upload_time_iso_8601": "2024-01-26T17:24:29.471607Z",
            "url": "https://files.pythonhosted.org/packages/f8/22/0855ee7a99424358ee11f0d4dce61fa142aa00e86b57b06f7bc9e644a137/Topsis-Aaditya-102117021-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-26 17:24:29",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-aaditya-102117021"
}
        
Elapsed time: 0.32969s