# TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)
## Table of Contents
1. [Description](#description)
2. [Installation](#installation)
3. [Usage](#usage)
4. [Example](#example)
## Description
### Topsis-Aaditya-102117021
*for: Project-1(UCS654) submitted-by: **Aaditya Vardhan** Roll no: **102117021** Group: **3CS-1***
Topsis-Aaditya-102117021 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)
## Installation
Use the package manager **pip** to install Topsis-Aaditya-102117021
`pip install Topsis-Aaditya-102117021`
## Usage
Enter csv filename followed by *.csv* extension, then enter the *weights* vector with vector values separated by commas, followed by the *impacts* vector with comma-separated signs *(+,-)*
```bash
python sample.py sample.csv "1,1,1,1,2" "+,+,-,+,+" sample-result.csv
```
## Example
### sample.csv
A csv file showing data for different mobile handsets having varying features
| Model | Storage space (in GB) | Camera (in MP) | Price (in $) | Looks (out of 5) |
|-------|------------------------|-----------------|---------------|------------------|
| M1 | 16 | 12 | 250 | 5 |
| M2 | 16 | 8 | 200 | 3 |
| M3 | 32 | 16 | 300 | 4 |
| M4 | 32 | 8 | 275 | 4 |
| M5 | 16 | 16 | 225 | 2 |
weights vector = [1, 1, 1, 1]
impacts vector = [+,+,-,+]
### input:
`python sample.py sample.csv "1,1,1,1" "+,+,-,+" sample-result.csv`
### output:
| Topsis-score | Rank |
|-------------|------|
| 0.534277 | 3 |
| 0.308368 | 5 |
| 0.691632 | 1 |
| 0.534737 | 2 |
| 0.401046 | 4 |
Raw data
{
"_id": null,
"home_page": "",
"name": "Topsis-Aaditya-102117021",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "topsis,decision-analysis,similarity",
"author": "intrinsicvardhan (Aaditya Vardhan)",
"author_email": "intrinsicvardhan@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f8/22/0855ee7a99424358ee11f0d4dce61fa142aa00e86b57b06f7bc9e644a137/Topsis-Aaditya-102117021-0.0.4.tar.gz",
"platform": null,
"description": "# TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)\r\n\r\n## Table of Contents\r\n\r\n1. [Description](#description)\r\n2. [Installation](#installation)\r\n3. [Usage](#usage)\r\n4. [Example](#example)\r\n\r\n## Description\r\n\r\n### Topsis-Aaditya-102117021\r\n\r\n*for: Project-1(UCS654) submitted-by: **Aaditya Vardhan** Roll no: **102117021** Group: **3CS-1***\r\n\r\nTopsis-Aaditya-102117021 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)\r\n\r\n## Installation\r\n\r\nUse the package manager **pip** to install Topsis-Aaditya-102117021\r\n\r\n`pip install Topsis-Aaditya-102117021`\r\n\r\n## Usage\r\n\r\nEnter csv filename followed by *.csv* extension, then enter the *weights* vector with vector values separated by commas, followed by the *impacts* vector with comma-separated signs *(+,-)*\r\n\r\n```bash\r\npython sample.py sample.csv \"1,1,1,1,2\" \"+,+,-,+,+\" sample-result.csv\r\n```\r\n\r\n## Example\r\n\r\n### sample.csv\r\n\r\nA csv file showing data for different mobile handsets having varying features\r\n\r\n| Model | Storage space (in GB) | Camera (in MP) | Price (in $) | Looks (out of 5) |\r\n|-------|------------------------|-----------------|---------------|------------------|\r\n| M1 | 16 | 12 | 250 | 5 |\r\n| M2 | 16 | 8 | 200 | 3 |\r\n| M3 | 32 | 16 | 300 | 4 |\r\n| M4 | 32 | 8 | 275 | 4 |\r\n| M5 | 16 | 16 | 225 | 2 |\r\n\r\nweights vector = [1, 1, 1, 1]\r\nimpacts vector = [+,+,-,+]\r\n\r\n### input:\r\n\r\n`python sample.py sample.csv \"1,1,1,1\" \"+,+,-,+\" sample-result.csv`\r\n\r\n### output:\r\n\r\n| Topsis-score | Rank |\r\n|-------------|------|\r\n| 0.534277 | 3 |\r\n| 0.308368 | 5 |\r\n| 0.691632 | 1 |\r\n| 0.534737 | 2 |\r\n| 0.401046 | 4 |\r\n\r\n\r\n\r\n\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "",
"summary": "Implementing TOPSIS",
"version": "0.0.4",
"project_urls": null,
"split_keywords": [
"topsis",
"decision-analysis",
"similarity"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "87356caf44dff2707bc54e5a88724c5692dbcd8f1c48f32df31e0b87dc7cf662",
"md5": "918f36eeba76cad9cad6d79e51ebc755",
"sha256": "be04144699c6311f99acde258ab9f0e5e2f7fdc7c035502cfa9b59d614099619"
},
"downloads": -1,
"filename": "Topsis_Aaditya_102117021-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "918f36eeba76cad9cad6d79e51ebc755",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3800,
"upload_time": "2024-01-26T17:24:26",
"upload_time_iso_8601": "2024-01-26T17:24:26.119950Z",
"url": "https://files.pythonhosted.org/packages/87/35/6caf44dff2707bc54e5a88724c5692dbcd8f1c48f32df31e0b87dc7cf662/Topsis_Aaditya_102117021-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f8220855ee7a99424358ee11f0d4dce61fa142aa00e86b57b06f7bc9e644a137",
"md5": "0fede107fdb1ce7ba1513468f59fd4d6",
"sha256": "f0ca08c1cbf9825d7594e87bb3ba4e1a2d15d4a7a1351f1a00db7c460a7babe5"
},
"downloads": -1,
"filename": "Topsis-Aaditya-102117021-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "0fede107fdb1ce7ba1513468f59fd4d6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3562,
"upload_time": "2024-01-26T17:24:29",
"upload_time_iso_8601": "2024-01-26T17:24:29.471607Z",
"url": "https://files.pythonhosted.org/packages/f8/22/0855ee7a99424358ee11f0d4dce61fa142aa00e86b57b06f7bc9e644a137/Topsis-Aaditya-102117021-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-26 17:24:29",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "topsis-aaditya-102117021"
}