# Title
A Python package to perform TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis.
# Description
This package implements the TOPSIS method for Multi-Criteria Decision-Making (MCDM). It takes an input dataset, weights, and impacts to calculate scores and ranks for the provided alternatives, helping users to make better decisions.
# Features
Implements the TOPSIS method for decision-making.
Supports both positive and negative impacts.
Provides a simple command-line interface for easy usage.
# Installation
Explain how users can install your package. Include steps for installation via pip.
pip install Topsis-YourName-RollNumber
If the package isn’t uploaded to PyPI yet, include instructions for installing it from the source code:
git clone https://github.com/abhirajsinghjhajj/Topsis_Abhiraj_Singh_Jhajj_102217094.git
cd Topsis_Abhiraj_Singh_Jhajj_102217094
pip install .
# Usage
Provide examples of how to use the package or run the program. Include command-line usage examples.
Example:
python 101556.py 101556-data.csv "1,1,1,2" "+,+,-,+" 101556-result.csv
Explain what each parameter means:
101556.py: The Python script file.
101556-data.csv: The input file containing the data.
"1,1,1,2": Weights for each criterion.
"+,+,-,+": Impacts for each criterion (+ for benefit, - for cost).
101556-result.csv: The output file to save the result.
Raw data
{
"_id": null,
"home_page": null,
"name": "Topsis-Abhiraj-Singh-Jhajj-102217094",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "topsis multi-criteria decision-making ranking analysis",
"author": "Abhiraj Singh Jhajj",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/d5/7e/7f00182f434230e8425f3c8e204ba1e27c0bef2be371c7a4b5935229aa56/topsis_abhiraj_singh_jhajj_102217094-1.0.3.tar.gz",
"platform": null,
"description": "# Title\r\nA Python package to perform TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis.\r\n\r\n# Description\r\nThis package implements the TOPSIS method for Multi-Criteria Decision-Making (MCDM). It takes an input dataset, weights, and impacts to calculate scores and ranks for the provided alternatives, helping users to make better decisions.\r\n\r\n# Features\r\nImplements the TOPSIS method for decision-making.\r\nSupports both positive and negative impacts.\r\nProvides a simple command-line interface for easy usage.\r\n\r\n# Installation\r\nExplain how users can install your package. Include steps for installation via pip.\r\n\r\npip install Topsis-YourName-RollNumber\r\n\r\nIf the package isn\u2019t uploaded to PyPI yet, include instructions for installing it from the source code:\r\ngit clone https://github.com/abhirajsinghjhajj/Topsis_Abhiraj_Singh_Jhajj_102217094.git\r\ncd Topsis_Abhiraj_Singh_Jhajj_102217094\r\npip install .\r\n\r\n# Usage\r\nProvide examples of how to use the package or run the program. Include command-line usage examples.\r\nExample:\r\npython 101556.py 101556-data.csv \"1,1,1,2\" \"+,+,-,+\" 101556-result.csv\r\n\r\nExplain what each parameter means:\r\n101556.py: The Python script file.\r\n101556-data.csv: The input file containing the data.\r\n\"1,1,1,2\": Weights for each criterion.\r\n\"+,+,-,+\": Impacts for each criterion (+ for benefit, - for cost).\r\n101556-result.csv: The output file to save the result.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package for performing TOPSIS analysis.",
"version": "1.0.3",
"project_urls": {
"Documentation": "https://github.com/abhirajsinghjhajj/Topsis_Abhiraj_Singh_Jhajj_102217094/blob/main/README.md",
"Source": "https://github.com/Topsis_Abhiraj_Singh_Jhajj_102217094/Topsis-Package"
},
"split_keywords": [
"topsis",
"multi-criteria",
"decision-making",
"ranking",
"analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "477621d60c9164034ccf9c8d03e2657946f5799a18f8992b1985a74c1c15f1a9",
"md5": "fdd856c68691a86258d0d604ff0684f7",
"sha256": "82600c67bc9ace0128a6dd9c5225dbf566cd5f2d7ea05c6cbeac56b27151a500"
},
"downloads": -1,
"filename": "Topsis_Abhiraj_Singh_Jhajj_102217094-1.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fdd856c68691a86258d0d604ff0684f7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 3261,
"upload_time": "2025-01-24T04:02:17",
"upload_time_iso_8601": "2025-01-24T04:02:17.204428Z",
"url": "https://files.pythonhosted.org/packages/47/76/21d60c9164034ccf9c8d03e2657946f5799a18f8992b1985a74c1c15f1a9/Topsis_Abhiraj_Singh_Jhajj_102217094-1.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d57e7f00182f434230e8425f3c8e204ba1e27c0bef2be371c7a4b5935229aa56",
"md5": "feb20619a1d88400a848bf538720e2f6",
"sha256": "ca58f662a4c07b9022d8ff12aa853b4bc530eec5fb5302c95cfec618664d7c88"
},
"downloads": -1,
"filename": "topsis_abhiraj_singh_jhajj_102217094-1.0.3.tar.gz",
"has_sig": false,
"md5_digest": "feb20619a1d88400a848bf538720e2f6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 2808,
"upload_time": "2025-01-24T04:02:19",
"upload_time_iso_8601": "2025-01-24T04:02:19.171071Z",
"url": "https://files.pythonhosted.org/packages/d5/7e/7f00182f434230e8425f3c8e204ba1e27c0bef2be371c7a4b5935229aa56/topsis_abhiraj_singh_jhajj_102217094-1.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-24 04:02:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "abhirajsinghjhajj",
"github_project": "Topsis_Abhiraj_Singh_Jhajj_102217094",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "topsis-abhiraj-singh-jhajj-102217094"
}