Topsis-Abhiraj-Singh-Jhajj-102217094


NameTopsis-Abhiraj-Singh-Jhajj-102217094 JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryA Python package for performing TOPSIS analysis.
upload_time2025-01-24 04:02:19
maintainerNone
docs_urlNone
authorAbhiraj Singh Jhajj
requires_python>=3.7
licenseMIT
keywords topsis multi-criteria decision-making ranking analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Title
A Python package to perform TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis.

# Description
This package implements the TOPSIS method for Multi-Criteria Decision-Making (MCDM). It takes an input dataset, weights, and impacts to calculate scores and ranks for the provided alternatives, helping users to make better decisions.

# Features
Implements the TOPSIS method for decision-making.
Supports both positive and negative impacts.
Provides a simple command-line interface for easy usage.

# Installation
Explain how users can install your package. Include steps for installation via pip.

pip install Topsis-YourName-RollNumber

If the package isn’t uploaded to PyPI yet, include instructions for installing it from the source code:
git clone https://github.com/abhirajsinghjhajj/Topsis_Abhiraj_Singh_Jhajj_102217094.git
cd Topsis_Abhiraj_Singh_Jhajj_102217094
pip install .

# Usage
Provide examples of how to use the package or run the program. Include command-line usage examples.
Example:
python 101556.py 101556-data.csv "1,1,1,2" "+,+,-,+" 101556-result.csv

Explain what each parameter means:
101556.py: The Python script file.
101556-data.csv: The input file containing the data.
"1,1,1,2": Weights for each criterion.
"+,+,-,+": Impacts for each criterion (+ for benefit, - for cost).
101556-result.csv: The output file to save the result.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Topsis-Abhiraj-Singh-Jhajj-102217094",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "topsis multi-criteria decision-making ranking analysis",
    "author": "Abhiraj Singh Jhajj",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/d5/7e/7f00182f434230e8425f3c8e204ba1e27c0bef2be371c7a4b5935229aa56/topsis_abhiraj_singh_jhajj_102217094-1.0.3.tar.gz",
    "platform": null,
    "description": "# Title\r\nA Python package to perform TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis.\r\n\r\n# Description\r\nThis package implements the TOPSIS method for Multi-Criteria Decision-Making (MCDM). It takes an input dataset, weights, and impacts to calculate scores and ranks for the provided alternatives, helping users to make better decisions.\r\n\r\n# Features\r\nImplements the TOPSIS method for decision-making.\r\nSupports both positive and negative impacts.\r\nProvides a simple command-line interface for easy usage.\r\n\r\n# Installation\r\nExplain how users can install your package. Include steps for installation via pip.\r\n\r\npip install Topsis-YourName-RollNumber\r\n\r\nIf the package isn\u2019t uploaded to PyPI yet, include instructions for installing it from the source code:\r\ngit clone https://github.com/abhirajsinghjhajj/Topsis_Abhiraj_Singh_Jhajj_102217094.git\r\ncd Topsis_Abhiraj_Singh_Jhajj_102217094\r\npip install .\r\n\r\n# Usage\r\nProvide examples of how to use the package or run the program. Include command-line usage examples.\r\nExample:\r\npython 101556.py 101556-data.csv \"1,1,1,2\" \"+,+,-,+\" 101556-result.csv\r\n\r\nExplain what each parameter means:\r\n101556.py: The Python script file.\r\n101556-data.csv: The input file containing the data.\r\n\"1,1,1,2\": Weights for each criterion.\r\n\"+,+,-,+\": Impacts for each criterion (+ for benefit, - for cost).\r\n101556-result.csv: The output file to save the result.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package for performing TOPSIS analysis.",
    "version": "1.0.3",
    "project_urls": {
        "Documentation": "https://github.com/abhirajsinghjhajj/Topsis_Abhiraj_Singh_Jhajj_102217094/blob/main/README.md",
        "Source": "https://github.com/Topsis_Abhiraj_Singh_Jhajj_102217094/Topsis-Package"
    },
    "split_keywords": [
        "topsis",
        "multi-criteria",
        "decision-making",
        "ranking",
        "analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "477621d60c9164034ccf9c8d03e2657946f5799a18f8992b1985a74c1c15f1a9",
                "md5": "fdd856c68691a86258d0d604ff0684f7",
                "sha256": "82600c67bc9ace0128a6dd9c5225dbf566cd5f2d7ea05c6cbeac56b27151a500"
            },
            "downloads": -1,
            "filename": "Topsis_Abhiraj_Singh_Jhajj_102217094-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fdd856c68691a86258d0d604ff0684f7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 3261,
            "upload_time": "2025-01-24T04:02:17",
            "upload_time_iso_8601": "2025-01-24T04:02:17.204428Z",
            "url": "https://files.pythonhosted.org/packages/47/76/21d60c9164034ccf9c8d03e2657946f5799a18f8992b1985a74c1c15f1a9/Topsis_Abhiraj_Singh_Jhajj_102217094-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d57e7f00182f434230e8425f3c8e204ba1e27c0bef2be371c7a4b5935229aa56",
                "md5": "feb20619a1d88400a848bf538720e2f6",
                "sha256": "ca58f662a4c07b9022d8ff12aa853b4bc530eec5fb5302c95cfec618664d7c88"
            },
            "downloads": -1,
            "filename": "topsis_abhiraj_singh_jhajj_102217094-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "feb20619a1d88400a848bf538720e2f6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 2808,
            "upload_time": "2025-01-24T04:02:19",
            "upload_time_iso_8601": "2025-01-24T04:02:19.171071Z",
            "url": "https://files.pythonhosted.org/packages/d5/7e/7f00182f434230e8425f3c8e204ba1e27c0bef2be371c7a4b5935229aa56/topsis_abhiraj_singh_jhajj_102217094-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-24 04:02:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "abhirajsinghjhajj",
    "github_project": "Topsis_Abhiraj_Singh_Jhajj_102217094",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-abhiraj-singh-jhajj-102217094"
}
        
Elapsed time: 0.59482s