# TOPSIS
Submitted By: **Abhishek Gandhi 102003364**
***
## What is TOPSIS?
**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution
(TOPSIS) originated in the 1980s as a multi-criteria decision making method.
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,
and greatest distance from the negative-ideal solution.
<br>
## How to install this package:
```
>> pip install topsis-abhishek-102003364
```
### In Command Prompt
```
>> python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>
>> python 102003364.py data.csv "1,1,1,1" "+,+,-,+" result.csv
```
## Input file (data.csv)
The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.
Model | Correlation | R<sup>2</sup> | RMSE | Accuracy
------|------------ | ------------ | ---- | ------------
M1 | 0.79 | 0.62 | 1.25 | 60.89
M2 | 0.66 | 0.44 | 2.89 | 63.07
M3 | 0.56 | 0.31 | 1.57 | 62.87
M4 | 0.82 | 0.67 | 2.68 | 70.19
M5 | 0.75 | 0.56 | 1.3 | 80.39
Weights (`weights`) is not already normalised will be normalised later in the code.
Information of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.
<br>
## Output file (result.csv)
Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Topsis_score | Rank
------|------------ | --------------| ---- | -------- | ------------ | ------
M1 | 0.79 | 0.62 | 1.25 | 60.89 | 0.7722 | 2
M2 | 0.66 | 0.44 | 2.89 | 63.07 | 0.2255 | 5
M3 | 0.56 | 0.31 | 1.57 | 62.87 | 0.4388 | 4
M4 | 0.82 | 0.67 | 2.68 | 70.19 | 0.5238 | 3
M5 | 0.75 | 0.56 | 1.3 | 80.39 | 0.8113 | 1
<br>
The output file contains columns of input file along with two additional columns having **Topsis_score** and **Rank**
Raw data
{
"_id": null,
"home_page": "https://github.com/Abhishek3450/topsis-package",
"name": "Topsis-Abhishek-102003364",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "topsis,multiple criteria decision",
"author": "Abhishek Gandhi",
"author_email": "abhishekgandhi989@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/63/49/8a0bb20c43fcadcb2b939a8b08cb0da47e348915f99c894d3110ba911c66/Topsis-Abhishek-102003364-0.2.tar.gz",
"platform": null,
"description": "# TOPSIS\r\n\r\n\r\nSubmitted By: **Abhishek Gandhi 102003364**\r\n\r\n***\r\n\r\n## What is TOPSIS?\r\n\r\n**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution \r\n(TOPSIS) originated in the 1980s as a multi-criteria decision making method.\r\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, \r\nand greatest distance from the negative-ideal solution. \r\n\r\n<br>\r\n\r\n## How to install this package:\r\n```\r\n>> pip install topsis-abhishek-102003364\r\n```\r\n\r\n\r\n### In Command Prompt\r\n```\r\n>> python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>\r\n>> python 102003364.py data.csv \"1,1,1,1\" \"+,+,-,+\" result.csv\r\n```\r\n\r\n## Input file (data.csv)\r\n\r\nThe decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\r\n\r\nModel | Correlation | R<sup>2</sup> | RMSE | Accuracy\r\n------|------------ | ------------ | ---- | ------------\r\nM1 |\t0.79 | 0.62\t | 1.25 | 60.89\r\nM2 | 0.66 | 0.44\t | 2.89 | 63.07\r\nM3 |\t0.56 | 0.31\t | 1.57 | 62.87\r\nM4 |\t0.82 | 0.67\t | 2.68 | 70.19\r\nM5 |\t0.75 | 0.56\t | 1.3 | 80.39\r\n\r\nWeights (`weights`) is not already normalised will be normalised later in the code.\r\n\r\nInformation of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.\r\n\r\n<br>\r\n\r\n## Output file (result.csv)\r\n\r\n\r\nModel | Correlation | R<sup>2</sup> | RMSE | Accuracy | Topsis_score | Rank\r\n------|------------ | --------------| ---- | -------- | ------------ | ------ \r\nM1 |\t0.79 | 0.62\t | 1.25 | 60.89 | 0.7722 | 2\r\nM2 | 0.66 | 0.44\t | 2.89 | 63.07 | 0.2255 | 5\r\nM3 |\t0.56 | 0.31\t | 1.57 | 62.87 | 0.4388 | 4\r\nM4 |\t0.82 | 0.67\t | 2.68 | 70.19 | 0.5238 | 3\r\nM5 |\t0.75 | 0.56\t | 1.3 | 80.39 | 0.8113 | 1\r\n\r\n\r\n<br>\r\nThe output file contains columns of input file along with two additional columns having **Topsis_score** and **Rank** \r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "This package can be used for implementation of Multiple criteria decision making using Topsis Algorithm. This is a python library for dealing with Multi-Criteria Decision Making (MCDM) problems by using techniques for order of preference by similarity to ideal solution (TOPSIS).",
"version": "0.2",
"split_keywords": [
"topsis",
"multiple criteria decision"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "63498a0bb20c43fcadcb2b939a8b08cb0da47e348915f99c894d3110ba911c66",
"md5": "493abab6558d260252d7da38fbd2b654",
"sha256": "206ad219698a4bcebe2c6bae96040bdd0f6f46e5e469f1484e0bcd4bd574aca3"
},
"downloads": -1,
"filename": "Topsis-Abhishek-102003364-0.2.tar.gz",
"has_sig": false,
"md5_digest": "493abab6558d260252d7da38fbd2b654",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4243,
"upload_time": "2023-01-22T18:11:23",
"upload_time_iso_8601": "2023-01-22T18:11:23.095753Z",
"url": "https://files.pythonhosted.org/packages/63/49/8a0bb20c43fcadcb2b939a8b08cb0da47e348915f99c894d3110ba911c66/Topsis-Abhishek-102003364-0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-22 18:11:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "Abhishek3450",
"github_project": "topsis-package",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "topsis-abhishek-102003364"
}