Topsis-Abhishek-102003364


NameTopsis-Abhishek-102003364 JSON
Version 0.2 PyPI version JSON
download
home_pagehttps://github.com/Abhishek3450/topsis-package
SummaryThis package can be used for implementation of Multiple criteria decision making using Topsis Algorithm. This is a python library for dealing with Multi-Criteria Decision Making (MCDM) problems by using techniques for order of preference by similarity to ideal solution (TOPSIS).
upload_time2023-01-22 18:11:23
maintainer
docs_urlNone
authorAbhishek Gandhi
requires_python
licenseMIT
keywords topsis multiple criteria decision
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS


Submitted By: **Abhishek Gandhi 102003364**

***

## What is TOPSIS?

**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution 
(TOPSIS) originated in the 1980s as a multi-criteria decision making method.
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, 
and greatest distance from the negative-ideal solution. 

<br>

## How to install this package:
```
>> pip install topsis-abhishek-102003364
```


### In Command Prompt
```
>> python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>
>> python 102003364.py data.csv "1,1,1,1" "+,+,-,+" result.csv
```

## Input file (data.csv)

The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.

Model | Correlation | R<sup>2</sup> | RMSE | Accuracy
------|------------ | ------------  | ---- | ------------
M1 |	0.79        | 0.62	        | 1.25 | 60.89
M2 |    0.66        | 0.44	        | 2.89 | 63.07
M3 |	0.56        | 0.31	        | 1.57 | 62.87
M4 |	0.82        | 0.67	        | 2.68 | 70.19
M5 |	0.75        | 0.56	        | 1.3  | 80.39

Weights (`weights`) is not already normalised will be normalised later in the code.

Information of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.

<br>

## Output file (result.csv)


Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Topsis_score | Rank
------|------------ | --------------| ---- | -------- | ------------ | ------ 
M1 |	0.79        | 0.62	        | 1.25 | 60.89    | 0.7722       | 2
M2 |    0.66        | 0.44	        | 2.89 | 63.07    | 0.2255       | 5
M3 |	0.56        | 0.31	        | 1.57 | 62.87    | 0.4388       | 4
M4 |	0.82        | 0.67	        | 2.68 | 70.19    | 0.5238       | 3
M5 |	0.75        | 0.56	        | 1.3  | 80.39    | 0.8113       | 1


<br>
The output file contains columns of input file along with two additional columns having **Topsis_score** and **Rank** 



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Abhishek3450/topsis-package",
    "name": "Topsis-Abhishek-102003364",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "topsis,multiple criteria decision",
    "author": "Abhishek Gandhi",
    "author_email": "abhishekgandhi989@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/63/49/8a0bb20c43fcadcb2b939a8b08cb0da47e348915f99c894d3110ba911c66/Topsis-Abhishek-102003364-0.2.tar.gz",
    "platform": null,
    "description": "# TOPSIS\r\n\r\n\r\nSubmitted By: **Abhishek Gandhi 102003364**\r\n\r\n***\r\n\r\n## What is TOPSIS?\r\n\r\n**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution \r\n(TOPSIS) originated in the 1980s as a multi-criteria decision making method.\r\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, \r\nand greatest distance from the negative-ideal solution. \r\n\r\n<br>\r\n\r\n## How to install this package:\r\n```\r\n>> pip install topsis-abhishek-102003364\r\n```\r\n\r\n\r\n### In Command Prompt\r\n```\r\n>> python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>\r\n>> python 102003364.py data.csv \"1,1,1,1\" \"+,+,-,+\" result.csv\r\n```\r\n\r\n## Input file (data.csv)\r\n\r\nThe decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\r\n\r\nModel | Correlation | R<sup>2</sup> | RMSE | Accuracy\r\n------|------------ | ------------  | ---- | ------------\r\nM1 |\t0.79        | 0.62\t        | 1.25 | 60.89\r\nM2 |    0.66        | 0.44\t        | 2.89 | 63.07\r\nM3 |\t0.56        | 0.31\t        | 1.57 | 62.87\r\nM4 |\t0.82        | 0.67\t        | 2.68 | 70.19\r\nM5 |\t0.75        | 0.56\t        | 1.3  | 80.39\r\n\r\nWeights (`weights`) is not already normalised will be normalised later in the code.\r\n\r\nInformation of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.\r\n\r\n<br>\r\n\r\n## Output file (result.csv)\r\n\r\n\r\nModel | Correlation | R<sup>2</sup> | RMSE | Accuracy | Topsis_score | Rank\r\n------|------------ | --------------| ---- | -------- | ------------ | ------ \r\nM1 |\t0.79        | 0.62\t        | 1.25 | 60.89    | 0.7722       | 2\r\nM2 |    0.66        | 0.44\t        | 2.89 | 63.07    | 0.2255       | 5\r\nM3 |\t0.56        | 0.31\t        | 1.57 | 62.87    | 0.4388       | 4\r\nM4 |\t0.82        | 0.67\t        | 2.68 | 70.19    | 0.5238       | 3\r\nM5 |\t0.75        | 0.56\t        | 1.3  | 80.39    | 0.8113       | 1\r\n\r\n\r\n<br>\r\nThe output file contains columns of input file along with two additional columns having **Topsis_score** and **Rank** \r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "This package can be used for implementation of Multiple criteria decision making using Topsis Algorithm. This is a python library for dealing with Multi-Criteria Decision Making (MCDM) problems by using techniques for order of preference by similarity to ideal solution (TOPSIS).",
    "version": "0.2",
    "split_keywords": [
        "topsis",
        "multiple criteria decision"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "63498a0bb20c43fcadcb2b939a8b08cb0da47e348915f99c894d3110ba911c66",
                "md5": "493abab6558d260252d7da38fbd2b654",
                "sha256": "206ad219698a4bcebe2c6bae96040bdd0f6f46e5e469f1484e0bcd4bd574aca3"
            },
            "downloads": -1,
            "filename": "Topsis-Abhishek-102003364-0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "493abab6558d260252d7da38fbd2b654",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4243,
            "upload_time": "2023-01-22T18:11:23",
            "upload_time_iso_8601": "2023-01-22T18:11:23.095753Z",
            "url": "https://files.pythonhosted.org/packages/63/49/8a0bb20c43fcadcb2b939a8b08cb0da47e348915f99c894d3110ba911c66/Topsis-Abhishek-102003364-0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-22 18:11:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Abhishek3450",
    "github_project": "topsis-package",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-abhishek-102003364"
}
        
Elapsed time: 0.13327s