Topsis-Anshul-102217060


NameTopsis-Anshul-102217060 JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryImplementation of Topsis
upload_time2025-01-20 14:32:22
maintainerNone
docs_urlNone
authorAnshul
requires_pythonNone
licenseNone
keywords topsis topsis-anshul-102217060 anshul topsis-anshul 102217060
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Topsis-Anshul
# TOPSIS Implementation

This repository contains a Python implementation of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS is a powerful multi-criteria decision-making method that assists in ranking a set of alternatives based on their proximity to the ideal solution.

## Table of Contents

1. [Introduction](#introduction)
2. [Usage](#usage)
3. [Command-line Arguments](#command-line-arguments)
6. [Requirements](#requirements)

## Introduction

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a well-established method for decision-making. This Python implementation allows you to easily apply TOPSIS to your decision matrix and obtain a ranked list of alternatives.

### Key Concepts:

- Decision Matrix: Represents alternatives and criteria.
- Weights: Assign importance to criteria.
- Impacts: Indicate whether higher or lower values are favorable.
- Normalization: Ensures all criteria are on a similar scale.
- Ideal and Worst Solutions: Represent best and worst possible outcomes.
- Similarity and Dissimilarity Measures: Calculate proximity to ideal and dissimilarity to worst.
- TOPSIS Score: Combines similarity and dissimilarity measures.
- Ranking: Alternatives are ranked based on TOPSIS scores.

## Usage

1. Ensure you have Python installed on your system.

2. Clone this repository to your local machine:

   bash
   git clone https://github.com/anshulmahajan14/Topsis-Anshul

3. Navigate to the project directory:

      bash
   git clone https://github.com/anshulmahajan14/Topsis-Anshul

   
4. Run the TOPSIS script with the required command-line arguments:

   
      python 102217060.py 102217060-data.csv "1,1,1,2" "+,+,-,+" result.csv



5. The TOPSIS analysis will be performed, and the result will be saved to the specifiedĀ CSVĀ file.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Topsis-Anshul-102217060",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Topsis, Topsis-Anshul-102217060, Anshul, Topsis-Anshul, 102217060",
    "author": "Anshul",
    "author_email": "amahajan2_be22@thapar.edu",
    "download_url": "https://files.pythonhosted.org/packages/a7/af/972f712252112777cf29e957d7f245992c54726ef9983fcfa34bf81b2a9a/Topsis-Anshul-102217060-1.0.3.tar.gz",
    "platform": null,
    "description": "# Topsis-Anshul\r\n# TOPSIS Implementation\r\n\r\nThis repository contains a Python implementation of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS is a powerful multi-criteria decision-making method that assists in ranking a set of alternatives based on their proximity to the ideal solution.\r\n\r\n## Table of Contents\r\n\r\n1. [Introduction](#introduction)\r\n2. [Usage](#usage)\r\n3. [Command-line Arguments](#command-line-arguments)\r\n6. [Requirements](#requirements)\r\n\r\n## Introduction\r\n\r\nThe Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a well-established method for decision-making. This Python implementation allows you to easily apply TOPSIS to your decision matrix and obtain a ranked list of alternatives.\r\n\r\n### Key Concepts:\r\n\r\n- Decision Matrix: Represents alternatives and criteria.\r\n- Weights: Assign importance to criteria.\r\n- Impacts: Indicate whether higher or lower values are favorable.\r\n- Normalization: Ensures all criteria are on a similar scale.\r\n- Ideal and Worst Solutions: Represent best and worst possible outcomes.\r\n- Similarity and Dissimilarity Measures: Calculate proximity to ideal and dissimilarity to worst.\r\n- TOPSIS Score: Combines similarity and dissimilarity measures.\r\n- Ranking: Alternatives are ranked based on TOPSIS scores.\r\n\r\n## Usage\r\n\r\n1. Ensure you have Python installed on your system.\r\n\r\n2. Clone this repository to your local machine:\r\n\r\n   bash\r\n   git clone https://github.com/anshulmahajan14/Topsis-Anshul\r\n\r\n3. Navigate to the project directory:\r\n\r\n      bash\r\n   git clone https://github.com/anshulmahajan14/Topsis-Anshul\r\n\r\n   \r\n4. Run the TOPSIS script with the required command-line arguments:\r\n\r\n   \r\n      python 102217060.py 102217060-data.csv \"1,1,1,2\" \"+,+,-,+\" result.csv\r\n\r\n\r\n\r\n5. The TOPSIS analysis will be performed, and the result will be saved to the specified\u00a0CSV\u00a0file.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Implementation of Topsis",
    "version": "1.0.3",
    "project_urls": {
        "Project Link": "https://github.com/anshulmahajan14/Topsis-Anshul"
    },
    "split_keywords": [
        "topsis",
        " topsis-anshul-102217060",
        " anshul",
        " topsis-anshul",
        " 102217060"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "625d91f6921dfac01961a0f3b77972fe0f7f1930ae3402070e56eb488ede1d4d",
                "md5": "42e490373ca062862235b8ae3aecbc6d",
                "sha256": "17eaa30a6b0dc1219aaeda7a8bf61d2bd12c4a734317805cd951d72198148c5d"
            },
            "downloads": -1,
            "filename": "Topsis_Anshul_102217060-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "42e490373ca062862235b8ae3aecbc6d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2158,
            "upload_time": "2025-01-20T14:32:19",
            "upload_time_iso_8601": "2025-01-20T14:32:19.889982Z",
            "url": "https://files.pythonhosted.org/packages/62/5d/91f6921dfac01961a0f3b77972fe0f7f1930ae3402070e56eb488ede1d4d/Topsis_Anshul_102217060-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a7af972f712252112777cf29e957d7f245992c54726ef9983fcfa34bf81b2a9a",
                "md5": "af2cc3f1128237ca0601ff37680ce0de",
                "sha256": "71006f2ef78af795cf1b25c15688306e5d5d1eaffa09a2915c69682a921000a3"
            },
            "downloads": -1,
            "filename": "Topsis-Anshul-102217060-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "af2cc3f1128237ca0601ff37680ce0de",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2310,
            "upload_time": "2025-01-20T14:32:22",
            "upload_time_iso_8601": "2025-01-20T14:32:22.073062Z",
            "url": "https://files.pythonhosted.org/packages/a7/af/972f712252112777cf29e957d7f245992c54726ef9983fcfa34bf81b2a9a/Topsis-Anshul-102217060-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-20 14:32:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "anshulmahajan14",
    "github_project": "Topsis-Anshul",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-anshul-102217060"
}
        
Elapsed time: 0.56443s