# TOPSIS Implementation by Arushi Gadodia
A Python package that implements the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method.
Submitted by: Arushi Gadodia
Roll Number: 102203683
## Installation
```bash
pip install Topsis-Arushi Gadodia-102203683
```
## Usage
From command line:
```bash
topsis input.csv "1,1,1,2" "+,+,-,+" output.csv
```
From Python:
```python
from topsis import calculate_topsis
calculate_topsis("input.csv", "1,1,1,2", "+,+,-,+", "output.csv")
```
## Input Format
1. Input file must be a CSV file with 3 or more columns
2. First column is the object/variable name
3. From 2nd column onwards should contain only numeric values
4. Weights should be comma-separated numbers (e.g. "1,1,1,2")
5. Impacts should be comma-separated +/- symbols (e.g. "+,+,-,+")
## Output
The program will create a result CSV file containing:
- All columns from input file
- Two additional columns: 'Topsis Score' and 'Rank'
## Error Handling
The program will check for:
- Correct number of parameters
- File existence
- Input file format
- Number of weights/impacts matching number of criteria
- Valid impact symbols (+/-)
## License
© 2024 Arushi Gadodia
This project is licensed under the MIT License - see the LICENSE file for details.#\x00 \x00T\x00o\x00p\x00s\x00i\x00s\x00
\x00
\x00
Raw data
{
"_id": null,
"home_page": "https://github.com/ArushiGadodia/Topsis",
"name": "Topsis-Arushi-102203683",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": "Arushi",
"author_email": "Arushigadodia14@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/36/91/fd9bbf04a7e5e356764e36bcd3e49ec163cfe5e8e3e746986ab42dcf2642/topsis_arushi_102203683-0.1.tar.gz",
"platform": null,
"description": "# TOPSIS Implementation by Arushi Gadodia\r\n\r\nA Python package that implements the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method.\r\n\r\nSubmitted by: Arushi Gadodia\r\nRoll Number: 102203683\r\n\r\n## Installation\r\n\r\n```bash\r\npip install Topsis-Arushi Gadodia-102203683\r\n```\r\n\r\n## Usage\r\n\r\nFrom command line:\r\n```bash\r\ntopsis input.csv \"1,1,1,2\" \"+,+,-,+\" output.csv\r\n```\r\n\r\nFrom Python:\r\n```python\r\nfrom topsis import calculate_topsis\r\ncalculate_topsis(\"input.csv\", \"1,1,1,2\", \"+,+,-,+\", \"output.csv\")\r\n```\r\n\r\n## Input Format\r\n\r\n1. Input file must be a CSV file with 3 or more columns\r\n2. First column is the object/variable name\r\n3. From 2nd column onwards should contain only numeric values\r\n4. Weights should be comma-separated numbers (e.g. \"1,1,1,2\")\r\n5. Impacts should be comma-separated +/- symbols (e.g. \"+,+,-,+\")\r\n\r\n## Output\r\n\r\nThe program will create a result CSV file containing:\r\n- All columns from input file\r\n- Two additional columns: 'Topsis Score' and 'Rank'\r\n\r\n## Error Handling\r\n\r\nThe program will check for:\r\n- Correct number of parameters\r\n- File existence\r\n- Input file format\r\n- Number of weights/impacts matching number of criteria\r\n- Valid impact symbols (+/-)\r\n\r\n## License\r\n\r\n\u00c2\u00a9 2024 Arushi Gadodia\r\nThis project is licensed under the MIT License - see the LICENSE file for details.#\\x00 \\x00T\\x00o\\x00p\\x00s\\x00i\\x00s\\x00\r\n\\x00\r\n\\x00\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python package implementing TOPSIS method for MCDM",
"version": "0.1",
"project_urls": {
"Homepage": "https://github.com/ArushiGadodia/Topsis"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2c90aada841b2cf953c3019fa88d04a9fd97aac2152e2dba1587f73f6bf94c29",
"md5": "19f63c4692ea1df0a76048ace0765bc6",
"sha256": "3604c8cadab98fca47bc690c847330d6d6fdf3ab5fff643fb8c4550c5e7603c7"
},
"downloads": -1,
"filename": "Topsis_Arushi_102203683-0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "19f63c4692ea1df0a76048ace0765bc6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 4927,
"upload_time": "2025-01-19T20:55:00",
"upload_time_iso_8601": "2025-01-19T20:55:00.326455Z",
"url": "https://files.pythonhosted.org/packages/2c/90/aada841b2cf953c3019fa88d04a9fd97aac2152e2dba1587f73f6bf94c29/Topsis_Arushi_102203683-0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3691fd9bbf04a7e5e356764e36bcd3e49ec163cfe5e8e3e746986ab42dcf2642",
"md5": "6cb21dd3d12a66ca067d4080ffa01a6d",
"sha256": "72688eb65e41d0b09297b309e8b79cf5ad6e78de3dc2d561fe9d7eb425968940"
},
"downloads": -1,
"filename": "topsis_arushi_102203683-0.1.tar.gz",
"has_sig": false,
"md5_digest": "6cb21dd3d12a66ca067d4080ffa01a6d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 4424,
"upload_time": "2025-01-19T20:55:02",
"upload_time_iso_8601": "2025-01-19T20:55:02.664022Z",
"url": "https://files.pythonhosted.org/packages/36/91/fd9bbf04a7e5e356764e36bcd3e49ec163cfe5e8e3e746986ab42dcf2642/topsis_arushi_102203683-0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-19 20:55:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ArushiGadodia",
"github_project": "Topsis",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "topsis-arushi-102203683"
}