# Topsis-Balbir-102217078
`Topsis-Balbir-102217078` is a Python package that implements the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method for multi-criteria decision making. This tool is ideal for evaluating and ranking alternatives based on multiple criteria, which is essential in fields like supply chain management, finance, and engineering.
## Installation
You can install `Topsis-Balbir-102217078` directly from the Python Package Index using pip:
```bash
pip install Topsis-Balbir-Singh-102217078
```
## Usage
To use Topsis-Balbir-102217078, you will need to prepare your data in a CSV format where the first column contains the names/labels of the alternatives, and the subsequent columns contain the criteria values. The command line interface can be used as follows:
```bash
topsis data.csv "1,2,3" "+,-,+" results.csv
```
Where:
- `data.csv` is your input file.
- `"1,2,3"` is a comma-separated string of weights for each criterion.
- `"+,-,+"` is a comma-separated string of impacts for each criterion, where `+` indicates that higher is better, and `-` that lower is better.
- `results.csv` will be the output file with the TOPSIS scores and rankings.
## Features
- Easy integration with Pandas DataFrames.
- Customizable weights and criteria impacts.
- Automatic normalization and ranking of alternatives.
- Command line interface for easy access and usage.
Raw data
{
"_id": null,
"home_page": "http://github.com/yourusername/your-repo",
"name": "Topsis-Balbir-Singh-102217078",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "topsis, decision analysis, MCDM, multi-criteria decision making, Python",
"author": "Balbir Bhatia",
"author_email": "balbirs2204@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f5/53/7e9618762705ffbc54149fcc74f121801f4f89e0226d31e08967805782e8/topsis_balbir_singh_102217078-1.1.tar.gz",
"platform": null,
"description": "# Topsis-Balbir-102217078\r\n\r\n`Topsis-Balbir-102217078` is a Python package that implements the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method for multi-criteria decision making. This tool is ideal for evaluating and ranking alternatives based on multiple criteria, which is essential in fields like supply chain management, finance, and engineering.\r\n\r\n## Installation\r\n\r\nYou can install `Topsis-Balbir-102217078` directly from the Python Package Index using pip:\r\n\r\n```bash\r\npip install Topsis-Balbir-Singh-102217078\r\n```\r\n\r\n## Usage\r\n\r\nTo use Topsis-Balbir-102217078, you will need to prepare your data in a CSV format where the first column contains the names/labels of the alternatives, and the subsequent columns contain the criteria values. The command line interface can be used as follows:\r\n\r\n```bash\r\ntopsis data.csv \"1,2,3\" \"+,-,+\" results.csv\r\n```\r\n\r\nWhere:\r\n- `data.csv` is your input file.\r\n- `\"1,2,3\"` is a comma-separated string of weights for each criterion.\r\n- `\"+,-,+\"` is a comma-separated string of impacts for each criterion, where `+` indicates that higher is better, and `-` that lower is better.\r\n- `results.csv` will be the output file with the TOPSIS scores and rankings.\r\n\r\n## Features\r\n\r\n- Easy integration with Pandas DataFrames.\r\n- Customizable weights and criteria impacts.\r\n- Automatic normalization and ranking of alternatives.\r\n- Command line interface for easy access and usage.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python package for multi-criteria decision making using the TOPSIS method.",
"version": "1.1",
"project_urls": {
"Homepage": "http://github.com/yourusername/your-repo"
},
"split_keywords": [
"topsis",
" decision analysis",
" mcdm",
" multi-criteria decision making",
" python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "bf3c8c078105fd1179422e961f35317f6514dc8948dc5f422d7087d92a507735",
"md5": "c5c3bcb4e96fc63b0a486159a4802986",
"sha256": "b9da6a23809aae024abd10603d007a8271477ac375df2b032195c4bd4fa24a49"
},
"downloads": -1,
"filename": "Topsis_Balbir_Singh_102217078-1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c5c3bcb4e96fc63b0a486159a4802986",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 2398,
"upload_time": "2025-01-18T10:30:06",
"upload_time_iso_8601": "2025-01-18T10:30:06.123432Z",
"url": "https://files.pythonhosted.org/packages/bf/3c/8c078105fd1179422e961f35317f6514dc8948dc5f422d7087d92a507735/Topsis_Balbir_Singh_102217078-1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f5537e9618762705ffbc54149fcc74f121801f4f89e0226d31e08967805782e8",
"md5": "185f7ceff3a7598b593d53bc62125f73",
"sha256": "d2c60ebeb2423c542a22526936f64f00035949a23ce2c8f2ac5420ce5fa85df1"
},
"downloads": -1,
"filename": "topsis_balbir_singh_102217078-1.1.tar.gz",
"has_sig": false,
"md5_digest": "185f7ceff3a7598b593d53bc62125f73",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 2243,
"upload_time": "2025-01-18T10:30:07",
"upload_time_iso_8601": "2025-01-18T10:30:07.667136Z",
"url": "https://files.pythonhosted.org/packages/f5/53/7e9618762705ffbc54149fcc74f121801f4f89e0226d31e08967805782e8/topsis_balbir_singh_102217078-1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-18 10:30:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yourusername",
"github_project": "your-repo",
"github_not_found": true,
"lcname": "topsis-balbir-singh-102217078"
}