TOPSIS Implementation in
This repository contains a Python implementation of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS is a multi-criteria decision-making method that helps in ranking a set of alternatives based on their proximity to the ideal solution.
Usage
To use this TOPSIS implementation, follow these steps:
1.Ensure you have Python installed on your system.
2.Clone this repository to your local machine:
git clone https://github.com/cheshtabiala/Assignment-Topsis
3.Navigate to the project directory:
cd your-repo
4.Run the TOPSIS script with the required command-line arguments:
python topsis.py <InputDataFile> <Weights> <Impacts> <ResultFileName>
Example:python topsis.py input_data.csv "1,1,1,2" "+,+,-,+" result.csv
5.The TOPSIS analysis will be performed, and the result will be saved to the specified CSV file.
Command-line Arguments:
<InputDataFile>: Path to the input CSV file containing the decision matrix.
<Weights>: Comma-separated weights for each criterion.
<Impacts>: Comma-separated impact signs for each criterion (use '+' for beneficial criteria and '-' for non-beneficial criteria).
<ResultFileName>: Desired name for the output CSV result file.
Example:python topsis.py input_data.csv "1,1,1,2" "+,+,-,+" result.csv
Requirements:
Python 3.x
pandas
numpy
Author:
Cheshta Biala
License:
This project is licensed under the MIT License - see the LICENSE.md file for details.
Raw data
{
"_id": null,
"home_page": "",
"name": "Topsis-CheshtaBiala-102103545",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Topsis,Topsis-CheshtaBiala-102103545,Cheshta,Topsis-Cheshta,102103545",
"author": "Cheshta Biala",
"author_email": "cbiala_be21@thapar.edu",
"download_url": "https://files.pythonhosted.org/packages/2a/35/82ca457f3aec9bff5505df8ced4403e4526d64d4bedfd8e48d0b4ba10249/Topsis-CheshtaBiala-102103545-1.0.0.tar.gz",
"platform": null,
"description": "TOPSIS Implementation in \n\nThis repository contains a Python implementation of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS is a multi-criteria decision-making method that helps in ranking a set of alternatives based on their proximity to the ideal solution.\n\nUsage\nTo use this TOPSIS implementation, follow these steps:\n\n1.Ensure you have Python installed on your system.\n\n2.Clone this repository to your local machine:\n\n git clone https://github.com/cheshtabiala/Assignment-Topsis\n\n3.Navigate to the project directory:\n\n cd your-repo\n \n4.Run the TOPSIS script with the required command-line arguments:\n\n\n\n python topsis.py <InputDataFile> <Weights> <Impacts> <ResultFileName>\n Example:python topsis.py input_data.csv \"1,1,1,2\" \"+,+,-,+\" result.csv\n\n5.The TOPSIS analysis will be performed, and the result will be saved to the specified CSV file.\n\nCommand-line Arguments:\n\n<InputDataFile>: Path to the input CSV file containing the decision matrix.\n\n<Weights>: Comma-separated weights for each criterion.\n\n<Impacts>: Comma-separated impact signs for each criterion (use '+' for beneficial criteria and '-' for non-beneficial criteria).\n\n<ResultFileName>: Desired name for the output CSV result file.\n\n Example:python topsis.py input_data.csv \"1,1,1,2\" \"+,+,-,+\" result.csv\n\nRequirements:\nPython 3.x\npandas\nnumpy\n\nAuthor:\nCheshta Biala\n\nLicense:\nThis project is licensed under the MIT License - see the LICENSE.md file for details.\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Implementation of Topsis",
"version": "1.0.0",
"project_urls": {
"Project Link": "https://github.com/cheshtabiala/Assignment-Topsis"
},
"split_keywords": [
"topsis",
"topsis-cheshtabiala-102103545",
"cheshta",
"topsis-cheshta",
"102103545"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2a3582ca457f3aec9bff5505df8ced4403e4526d64d4bedfd8e48d0b4ba10249",
"md5": "1825efb662ef2ac2d2573bfa71717565",
"sha256": "b2b3e4ca2fc0a2de32d35302922085ad4f00ddb196d22485844e2551167bea47"
},
"downloads": -1,
"filename": "Topsis-CheshtaBiala-102103545-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "1825efb662ef2ac2d2573bfa71717565",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2736,
"upload_time": "2024-01-28T07:00:09",
"upload_time_iso_8601": "2024-01-28T07:00:09.116772Z",
"url": "https://files.pythonhosted.org/packages/2a/35/82ca457f3aec9bff5505df8ced4403e4526d64d4bedfd8e48d0b4ba10249/Topsis-CheshtaBiala-102103545-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-28 07:00:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "cheshtabiala",
"github_project": "Assignment-Topsis",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "topsis-cheshtabiala-102103545"
}