Topsis-Chirag-102103554


NameTopsis-Chirag-102103554 JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/chirag21120/TOPSIS-Chirag-102103554
SummaryA python package for Multiple Criteria Decision Making (MCDM) using Topsis
upload_time2024-01-21 19:51:00
maintainer
docs_urlNone
authorChirag Mohan Gupta
requires_python
licenseMIT
keywords topsis 102103554 chirag mohan gupta
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS

It is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion.

### Installation

```sh
>> pip install TOPSIS-Chirag-102103554
```
### How to run in command prompt

```sh
>> from Topsis_Chirag_102103554.topsis_102103554 import topsis
>> topsis("data.csv","1,1,1,2","+,+,-,+","result.csv")
```

### Input File (data.csv)
1) Input file contain three or more columns
2) First column is the object/variable name (e.g. M1, M2, M3, M4…...)
3) From 2nd to last columns contain numeric values only

### Output File (result.csv)
Result file contains all the columns of input file and two additional columns having
TOPSIS SCORE and RANK

License
----

MIT

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/chirag21120/TOPSIS-Chirag-102103554",
    "name": "Topsis-Chirag-102103554",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "TOPSIS,102103554,Chirag Mohan Gupta",
    "author": "Chirag Mohan Gupta",
    "author_email": "mohanchirag2002@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/75/cb/6dc1a431acacf2f36140e9ec8de02b9a7c6b31e3c58e3c69533aeed6c569/Topsis_Chirag_102103554-1.0.0.tar.gz",
    "platform": null,
    "description": "# TOPSIS\r\n\r\nIt is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion.\r\n\r\n### Installation\r\n\r\n```sh\r\n>> pip install TOPSIS-Chirag-102103554\r\n```\r\n### How to run in command prompt\r\n\r\n```sh\r\n>> from Topsis_Chirag_102103554.topsis_102103554 import topsis\r\n>> topsis(\"data.csv\",\"1,1,1,2\",\"+,+,-,+\",\"result.csv\")\r\n```\r\n\r\n### Input File (data.csv)\r\n1) Input file contain three or more columns\r\n2) First column is the object/variable name (e.g. M1, M2, M3, M4\u00e2\u20ac\u00a6...)\r\n3) From 2nd to last columns contain numeric values only\r\n\r\n### Output File (result.csv)\r\nResult file contains all the columns of input file and two additional columns having\r\nTOPSIS SCORE and RANK\r\n\r\nLicense\r\n----\r\n\r\nMIT\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A python package for Multiple Criteria Decision Making (MCDM) using Topsis",
    "version": "1.0.0",
    "project_urls": {
        "Download": "https://github.com/chirag21120/TOPSIS-Chirag-102103554/archive/v1.0..0tar.gz",
        "Homepage": "https://github.com/chirag21120/TOPSIS-Chirag-102103554"
    },
    "split_keywords": [
        "topsis",
        "102103554",
        "chirag mohan gupta"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b2c6b885c6ecd0525f204357241a1c5258293a611b7f791bb905c7297f9ba17c",
                "md5": "465d746814ce8a1e0a19b8ea87540584",
                "sha256": "a3977b4156e410502a6412f70a1dbc592f5e2b905eb078a8b98bb3ac208e02dc"
            },
            "downloads": -1,
            "filename": "Topsis_Chirag_102103554-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "465d746814ce8a1e0a19b8ea87540584",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4334,
            "upload_time": "2024-01-21T19:50:57",
            "upload_time_iso_8601": "2024-01-21T19:50:57.842010Z",
            "url": "https://files.pythonhosted.org/packages/b2/c6/b885c6ecd0525f204357241a1c5258293a611b7f791bb905c7297f9ba17c/Topsis_Chirag_102103554-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "75cb6dc1a431acacf2f36140e9ec8de02b9a7c6b31e3c58e3c69533aeed6c569",
                "md5": "ed467605b2e2f643b580c193ca8c9c1b",
                "sha256": "9b40ff067dbcca9ba5274683e533b0a9c65d37dea534dcccc0025006f29fb14a"
            },
            "downloads": -1,
            "filename": "Topsis_Chirag_102103554-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ed467605b2e2f643b580c193ca8c9c1b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4195,
            "upload_time": "2024-01-21T19:51:00",
            "upload_time_iso_8601": "2024-01-21T19:51:00.891771Z",
            "url": "https://files.pythonhosted.org/packages/75/cb/6dc1a431acacf2f36140e9ec8de02b9a7c6b31e3c58e3c69533aeed6c569/Topsis_Chirag_102103554-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-21 19:51:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "chirag21120",
    "github_project": "TOPSIS-Chirag-102103554",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-chirag-102103554"
}
        
Elapsed time: 0.16135s