# TOPSIS
It is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion.
### Installation
```sh
>> pip install TOPSIS-Chirag-102103554
```
### How to run in command prompt
```sh
>> from Topsis_Chirag_102103554.topsis_102103554 import topsis
>> topsis("data.csv","1,1,1,2","+,+,-,+","result.csv")
```
### Input File (data.csv)
1) Input file contain three or more columns
2) First column is the object/variable name (e.g. M1, M2, M3, M4…...)
3) From 2nd to last columns contain numeric values only
### Output File (result.csv)
Result file contains all the columns of input file and two additional columns having
TOPSIS SCORE and RANK
License
----
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/chirag21120/TOPSIS-Chirag-102103554",
"name": "Topsis-Chirag-102103554",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "TOPSIS,102103554,Chirag Mohan Gupta",
"author": "Chirag Mohan Gupta",
"author_email": "mohanchirag2002@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/75/cb/6dc1a431acacf2f36140e9ec8de02b9a7c6b31e3c58e3c69533aeed6c569/Topsis_Chirag_102103554-1.0.0.tar.gz",
"platform": null,
"description": "# TOPSIS\r\n\r\nIt is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion.\r\n\r\n### Installation\r\n\r\n```sh\r\n>> pip install TOPSIS-Chirag-102103554\r\n```\r\n### How to run in command prompt\r\n\r\n```sh\r\n>> from Topsis_Chirag_102103554.topsis_102103554 import topsis\r\n>> topsis(\"data.csv\",\"1,1,1,2\",\"+,+,-,+\",\"result.csv\")\r\n```\r\n\r\n### Input File (data.csv)\r\n1) Input file contain three or more columns\r\n2) First column is the object/variable name (e.g. M1, M2, M3, M4\u00e2\u20ac\u00a6...)\r\n3) From 2nd to last columns contain numeric values only\r\n\r\n### Output File (result.csv)\r\nResult file contains all the columns of input file and two additional columns having\r\nTOPSIS SCORE and RANK\r\n\r\nLicense\r\n----\r\n\r\nMIT\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A python package for Multiple Criteria Decision Making (MCDM) using Topsis",
"version": "1.0.0",
"project_urls": {
"Download": "https://github.com/chirag21120/TOPSIS-Chirag-102103554/archive/v1.0..0tar.gz",
"Homepage": "https://github.com/chirag21120/TOPSIS-Chirag-102103554"
},
"split_keywords": [
"topsis",
"102103554",
"chirag mohan gupta"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b2c6b885c6ecd0525f204357241a1c5258293a611b7f791bb905c7297f9ba17c",
"md5": "465d746814ce8a1e0a19b8ea87540584",
"sha256": "a3977b4156e410502a6412f70a1dbc592f5e2b905eb078a8b98bb3ac208e02dc"
},
"downloads": -1,
"filename": "Topsis_Chirag_102103554-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "465d746814ce8a1e0a19b8ea87540584",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4334,
"upload_time": "2024-01-21T19:50:57",
"upload_time_iso_8601": "2024-01-21T19:50:57.842010Z",
"url": "https://files.pythonhosted.org/packages/b2/c6/b885c6ecd0525f204357241a1c5258293a611b7f791bb905c7297f9ba17c/Topsis_Chirag_102103554-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "75cb6dc1a431acacf2f36140e9ec8de02b9a7c6b31e3c58e3c69533aeed6c569",
"md5": "ed467605b2e2f643b580c193ca8c9c1b",
"sha256": "9b40ff067dbcca9ba5274683e533b0a9c65d37dea534dcccc0025006f29fb14a"
},
"downloads": -1,
"filename": "Topsis_Chirag_102103554-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "ed467605b2e2f643b580c193ca8c9c1b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4195,
"upload_time": "2024-01-21T19:51:00",
"upload_time_iso_8601": "2024-01-21T19:51:00.891771Z",
"url": "https://files.pythonhosted.org/packages/75/cb/6dc1a431acacf2f36140e9ec8de02b9a7c6b31e3c58e3c69533aeed6c569/Topsis_Chirag_102103554-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-21 19:51:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "chirag21120",
"github_project": "TOPSIS-Chirag-102103554",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "topsis-chirag-102103554"
}