Name | Topsis-Deepankar-Varma-102003431 JSON |
Version |
0.19
JSON |
| download |
home_page | |
Summary | This is a topsis package of Deepankar Varma version 0.19 |
upload_time | 2023-02-03 18:51:25 |
maintainer | |
docs_url | None |
author | Deepankar Varma |
requires_python | |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
## Topsis_Deepankar_Varma_102003431
# TOPSIS
Submitted By: _Deepankar Varma-102003431_.
Type: _Package_.
Title: **TOPSIS method for multiple-criteria decision making (MCDM)**.
Version: _0.19_.
Date: _2022-01-29_.
Author: _Deepankar Varma_.
Maintainer: **Deepankar Varma <satwikdpshrit@gmail.com>**.
Description: **Evaluation of alternatives based on multiple criteria using TOPSIS method.**.
---
## What is TOPSIS?
*Technique for **Order **Preference by **Similarity to **Ideal \*\*S*olution
(TOPSIS) originated in the 1980s as a multi-criteria decision making method.
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,
and greatest distance from the negative-ideal solution.
<br>
## How to install this package:
> > pip install Topsis-Deepankar-Varma-102003431==0.19
### In Command Prompt
> > topsis 102003431-data.csv "1,1,1,1,2" "-,+,+,-,+" 102003431-result.csv
## Input file (data.csv)
The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.
| Model | P1 | P2 | P3 | P4 | P5 |
| ----- | --- | ---- | --- | ---- | ----- |
| M1 | 0.7 | 0.71 | 6.7 | 42.1 | 12.59 |
| M2 | 0.8 | 0.83 | 7 | 31.7 | 10.11 |
| M3 | 0.7 | 0.62 | 4.8 | 46.7 | 13.23 |
| M4 | 0.9 | 0.61 | 6.4 | 42.4 | 12.55 |
| M5 | 0.9 | 0.88 | 3.6 | 62.2 | 16.91 |
| M6 | 0.9 | 0.77 | 6.5 | 51.5 | 14.91 |
| M7 | 0.9 | 0.44 | 5.3 | 48.9 | 13.83 |
| M8 | 0.9 | 0.86 | 3.4 | 37 | 10.55 |
Weights (`weights`) is not already normalised will be normalised later in the code.
Information of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.
<br>
## Output file (result.csv)
| Model | P1 | P2 | P3 | P4 | P5 | Topsis Score | Rank |
| ----- | ---- | ---- | --- | ---- | ----- | ------------ | ---- |
| M1 | 0.93 | 0.86 | 4.4 | 52.6 | 14.7 | 0.457283053 | 6 |
| M2 | 0.67 | 0.45 | 3.7 | 47.9 | 13.18 | 0.172274243 | 8 |
| M3 | 0.61 | 0.37 | 5.8 | 65 | 17.95 | 0.560480297 | 2 |
| M4 | 0.94 | 0.88 | 6 | 40.7 | 12.13 | 0.491036776 | 3 |
| M5 | 0.69 | 0.48 | 3.8 | 55.6 | 15.14 | 0.239375223 | 7 |
| M6 | 0.93 | 0.86 | 5.3 | 47.1 | 13.55 | 0.486632047 | 4 |
| M7 | 0.93 | 0.86 | 6.9 | 69.9 | 19.65 | 0.822186901 | 1 |
| M8 | 0.95 | 0.9 | 3.1 | 61.6 | 16.64 | 0.460139442 | 5 |
<br>
The output file contains columns of input file along with two additional columns having *Topsis_score* and *Rank*
Raw data
{
"_id": null,
"home_page": "",
"name": "Topsis-Deepankar-Varma-102003431",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Deepankar Varma",
"author_email": "satiwkdprhrit@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/fd/71/8bbc781bd57be1a98e01ae08e72579f9b7fe79e2a8b2b64ce6b6938240d5/Topsis_Deepankar_Varma_102003431-0.19.tar.gz",
"platform": null,
"description": "## Topsis_Deepankar_Varma_102003431\n\n# TOPSIS\n\nSubmitted By: _Deepankar Varma-102003431_.\n\nType: _Package_.\n\nTitle: **TOPSIS method for multiple-criteria decision making (MCDM)**.\n\nVersion: _0.19_.\n\nDate: _2022-01-29_.\n\nAuthor: _Deepankar Varma_.\n\nMaintainer: **Deepankar Varma <satwikdpshrit@gmail.com>**.\n\nDescription: **Evaluation of alternatives based on multiple criteria using TOPSIS method.**.\n\n---\n\n## What is TOPSIS?\n\n*Technique for **Order **Preference by **Similarity to **Ideal \\*\\*S*olution\n(TOPSIS) originated in the 1980s as a multi-criteria decision making method.\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,\nand greatest distance from the negative-ideal solution.\n\n<br>\n\n## How to install this package:\n\n> > pip install Topsis-Deepankar-Varma-102003431==0.19\n\n### In Command Prompt\n\n> > topsis 102003431-data.csv \"1,1,1,1,2\" \"-,+,+,-,+\" 102003431-result.csv\n\n## Input file (data.csv)\n\nThe decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\n\n| Model | P1 | P2 | P3 | P4 | P5 |\n| ----- | --- | ---- | --- | ---- | ----- |\n| M1 | 0.7 | 0.71 | 6.7 | 42.1 | 12.59 |\n| M2 | 0.8 | 0.83 | 7 | 31.7 | 10.11 |\n| M3 | 0.7 | 0.62 | 4.8 | 46.7 | 13.23 |\n| M4 | 0.9 | 0.61 | 6.4 | 42.4 | 12.55 |\n| M5 | 0.9 | 0.88 | 3.6 | 62.2 | 16.91 |\n| M6 | 0.9 | 0.77 | 6.5 | 51.5 | 14.91 |\n| M7 | 0.9 | 0.44 | 5.3 | 48.9 | 13.83 |\n| M8 | 0.9 | 0.86 | 3.4 | 37 | 10.55 |\n\nWeights (`weights`) is not already normalised will be normalised later in the code.\n\nInformation of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.\n\n<br>\n\n## Output file (result.csv)\n\n| Model | P1 | P2 | P3 | P4 | P5 | Topsis Score | Rank |\n| ----- | ---- | ---- | --- | ---- | ----- | ------------ | ---- |\n| M1 | 0.93 | 0.86 | 4.4 | 52.6 | 14.7 | 0.457283053 | 6 |\n| M2 | 0.67 | 0.45 | 3.7 | 47.9 | 13.18 | 0.172274243 | 8 |\n| M3 | 0.61 | 0.37 | 5.8 | 65 | 17.95 | 0.560480297 | 2 |\n| M4 | 0.94 | 0.88 | 6 | 40.7 | 12.13 | 0.491036776 | 3 |\n| M5 | 0.69 | 0.48 | 3.8 | 55.6 | 15.14 | 0.239375223 | 7 |\n| M6 | 0.93 | 0.86 | 5.3 | 47.1 | 13.55 | 0.486632047 | 4 |\n| M7 | 0.93 | 0.86 | 6.9 | 69.9 | 19.65 | 0.822186901 | 1 |\n| M8 | 0.95 | 0.9 | 3.1 | 61.6 | 16.64 | 0.460139442 | 5 |\n\n<br>\nThe output file contains columns of input file along with two additional columns having *Topsis_score* and *Rank*\n",
"bugtrack_url": null,
"license": "",
"summary": "This is a topsis package of Deepankar Varma version 0.19",
"version": "0.19",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "aecabefccda4ce0a71cb98d7449d01165841eb69c67346065084d6ba67a8f09b",
"md5": "4a923bb42dba4abb1d42e364f7c177cb",
"sha256": "76f614bdf5e035f50342e181ef410e4a3e18a863f8a16c7c85b1c25032f39c44"
},
"downloads": -1,
"filename": "Topsis_Deepankar_Varma_102003431-0.19-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4a923bb42dba4abb1d42e364f7c177cb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4305,
"upload_time": "2023-02-03T18:51:23",
"upload_time_iso_8601": "2023-02-03T18:51:23.381629Z",
"url": "https://files.pythonhosted.org/packages/ae/ca/befccda4ce0a71cb98d7449d01165841eb69c67346065084d6ba67a8f09b/Topsis_Deepankar_Varma_102003431-0.19-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fd718bbc781bd57be1a98e01ae08e72579f9b7fe79e2a8b2b64ce6b6938240d5",
"md5": "872c2f2f360fd7f1d5a8cc3646472575",
"sha256": "dd5802a0355128639996b9253339422175daa7bb46e0aa3aea642d5ece0c1acc"
},
"downloads": -1,
"filename": "Topsis_Deepankar_Varma_102003431-0.19.tar.gz",
"has_sig": false,
"md5_digest": "872c2f2f360fd7f1d5a8cc3646472575",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3700,
"upload_time": "2023-02-03T18:51:25",
"upload_time_iso_8601": "2023-02-03T18:51:25.732805Z",
"url": "https://files.pythonhosted.org/packages/fd/71/8bbc781bd57be1a98e01ae08e72579f9b7fe79e2a8b2b64ce6b6938240d5/Topsis_Deepankar_Varma_102003431-0.19.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-02-03 18:51:25",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "topsis-deepankar-varma-102003431"
}