Topsis-Deepankar-Varma-102003431


NameTopsis-Deepankar-Varma-102003431 JSON
Version 0.19 PyPI version JSON
download
home_page
SummaryThis is a topsis package of Deepankar Varma version 0.19
upload_time2023-02-03 18:51:25
maintainer
docs_urlNone
authorDeepankar Varma
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Topsis_Deepankar_Varma_102003431

# TOPSIS

Submitted By: _Deepankar Varma-102003431_.

Type: _Package_.

Title: **TOPSIS method for multiple-criteria decision making (MCDM)**.

Version: _0.19_.

Date: _2022-01-29_.

Author: _Deepankar Varma_.

Maintainer: **Deepankar Varma <satwikdpshrit@gmail.com>**.

Description: **Evaluation of alternatives based on multiple criteria using TOPSIS method.**.

---

## What is TOPSIS?

*Technique for **Order **Preference by **Similarity to **Ideal \*\*S*olution
(TOPSIS) originated in the 1980s as a multi-criteria decision making method.
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,
and greatest distance from the negative-ideal solution.

<br>

## How to install this package:

> > pip install Topsis-Deepankar-Varma-102003431==0.19

### In Command Prompt

> > topsis 102003431-data.csv "1,1,1,1,2" "-,+,+,-,+" 102003431-result.csv

## Input file (data.csv)

The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.

| Model | P1  | P2   | P3  | P4   | P5    |
| ----- | --- | ---- | --- | ---- | ----- |
| M1    | 0.7 | 0.71 | 6.7 | 42.1 | 12.59 |
| M2    | 0.8 | 0.83 | 7   | 31.7 | 10.11 |
| M3    | 0.7 | 0.62 | 4.8 | 46.7 | 13.23 |
| M4    | 0.9 | 0.61 | 6.4 | 42.4 | 12.55 |
| M5    | 0.9 | 0.88 | 3.6 | 62.2 | 16.91 |
| M6    | 0.9 | 0.77 | 6.5 | 51.5 | 14.91 |
| M7    | 0.9 | 0.44 | 5.3 | 48.9 | 13.83 |
| M8    | 0.9 | 0.86 | 3.4 | 37   | 10.55 |

Weights (`weights`) is not already normalised will be normalised later in the code.

Information of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.

<br>

## Output file (result.csv)

| Model | P1   | P2   | P3  | P4   | P5    | Topsis Score | Rank |
| ----- | ---- | ---- | --- | ---- | ----- | ------------ | ---- |
| M1    | 0.93 | 0.86 | 4.4 | 52.6 | 14.7  | 0.457283053  | 6    |
| M2    | 0.67 | 0.45 | 3.7 | 47.9 | 13.18 | 0.172274243  | 8    |
| M3    | 0.61 | 0.37 | 5.8 | 65   | 17.95 | 0.560480297  | 2    |
| M4    | 0.94 | 0.88 | 6   | 40.7 | 12.13 | 0.491036776  | 3    |
| M5    | 0.69 | 0.48 | 3.8 | 55.6 | 15.14 | 0.239375223  | 7    |
| M6    | 0.93 | 0.86 | 5.3 | 47.1 | 13.55 | 0.486632047  | 4    |
| M7    | 0.93 | 0.86 | 6.9 | 69.9 | 19.65 | 0.822186901  | 1    |
| M8    | 0.95 | 0.9  | 3.1 | 61.6 | 16.64 | 0.460139442  | 5    |

<br>
The output file contains columns of input file along with two additional columns having *Topsis_score* and *Rank*

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Deepankar-Varma-102003431",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Deepankar Varma",
    "author_email": "satiwkdprhrit@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/fd/71/8bbc781bd57be1a98e01ae08e72579f9b7fe79e2a8b2b64ce6b6938240d5/Topsis_Deepankar_Varma_102003431-0.19.tar.gz",
    "platform": null,
    "description": "## Topsis_Deepankar_Varma_102003431\n\n# TOPSIS\n\nSubmitted By: _Deepankar Varma-102003431_.\n\nType: _Package_.\n\nTitle: **TOPSIS method for multiple-criteria decision making (MCDM)**.\n\nVersion: _0.19_.\n\nDate: _2022-01-29_.\n\nAuthor: _Deepankar Varma_.\n\nMaintainer: **Deepankar Varma <satwikdpshrit@gmail.com>**.\n\nDescription: **Evaluation of alternatives based on multiple criteria using TOPSIS method.**.\n\n---\n\n## What is TOPSIS?\n\n*Technique for **Order **Preference by **Similarity to **Ideal \\*\\*S*olution\n(TOPSIS) originated in the 1980s as a multi-criteria decision making method.\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,\nand greatest distance from the negative-ideal solution.\n\n<br>\n\n## How to install this package:\n\n> > pip install Topsis-Deepankar-Varma-102003431==0.19\n\n### In Command Prompt\n\n> > topsis 102003431-data.csv \"1,1,1,1,2\" \"-,+,+,-,+\" 102003431-result.csv\n\n## Input file (data.csv)\n\nThe decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\n\n| Model | P1  | P2   | P3  | P4   | P5    |\n| ----- | --- | ---- | --- | ---- | ----- |\n| M1    | 0.7 | 0.71 | 6.7 | 42.1 | 12.59 |\n| M2    | 0.8 | 0.83 | 7   | 31.7 | 10.11 |\n| M3    | 0.7 | 0.62 | 4.8 | 46.7 | 13.23 |\n| M4    | 0.9 | 0.61 | 6.4 | 42.4 | 12.55 |\n| M5    | 0.9 | 0.88 | 3.6 | 62.2 | 16.91 |\n| M6    | 0.9 | 0.77 | 6.5 | 51.5 | 14.91 |\n| M7    | 0.9 | 0.44 | 5.3 | 48.9 | 13.83 |\n| M8    | 0.9 | 0.86 | 3.4 | 37   | 10.55 |\n\nWeights (`weights`) is not already normalised will be normalised later in the code.\n\nInformation of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.\n\n<br>\n\n## Output file (result.csv)\n\n| Model | P1   | P2   | P3  | P4   | P5    | Topsis Score | Rank |\n| ----- | ---- | ---- | --- | ---- | ----- | ------------ | ---- |\n| M1    | 0.93 | 0.86 | 4.4 | 52.6 | 14.7  | 0.457283053  | 6    |\n| M2    | 0.67 | 0.45 | 3.7 | 47.9 | 13.18 | 0.172274243  | 8    |\n| M3    | 0.61 | 0.37 | 5.8 | 65   | 17.95 | 0.560480297  | 2    |\n| M4    | 0.94 | 0.88 | 6   | 40.7 | 12.13 | 0.491036776  | 3    |\n| M5    | 0.69 | 0.48 | 3.8 | 55.6 | 15.14 | 0.239375223  | 7    |\n| M6    | 0.93 | 0.86 | 5.3 | 47.1 | 13.55 | 0.486632047  | 4    |\n| M7    | 0.93 | 0.86 | 6.9 | 69.9 | 19.65 | 0.822186901  | 1    |\n| M8    | 0.95 | 0.9  | 3.1 | 61.6 | 16.64 | 0.460139442  | 5    |\n\n<br>\nThe output file contains columns of input file along with two additional columns having *Topsis_score* and *Rank*\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "This is a topsis package of Deepankar Varma version 0.19",
    "version": "0.19",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aecabefccda4ce0a71cb98d7449d01165841eb69c67346065084d6ba67a8f09b",
                "md5": "4a923bb42dba4abb1d42e364f7c177cb",
                "sha256": "76f614bdf5e035f50342e181ef410e4a3e18a863f8a16c7c85b1c25032f39c44"
            },
            "downloads": -1,
            "filename": "Topsis_Deepankar_Varma_102003431-0.19-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4a923bb42dba4abb1d42e364f7c177cb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4305,
            "upload_time": "2023-02-03T18:51:23",
            "upload_time_iso_8601": "2023-02-03T18:51:23.381629Z",
            "url": "https://files.pythonhosted.org/packages/ae/ca/befccda4ce0a71cb98d7449d01165841eb69c67346065084d6ba67a8f09b/Topsis_Deepankar_Varma_102003431-0.19-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd718bbc781bd57be1a98e01ae08e72579f9b7fe79e2a8b2b64ce6b6938240d5",
                "md5": "872c2f2f360fd7f1d5a8cc3646472575",
                "sha256": "dd5802a0355128639996b9253339422175daa7bb46e0aa3aea642d5ece0c1acc"
            },
            "downloads": -1,
            "filename": "Topsis_Deepankar_Varma_102003431-0.19.tar.gz",
            "has_sig": false,
            "md5_digest": "872c2f2f360fd7f1d5a8cc3646472575",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3700,
            "upload_time": "2023-02-03T18:51:25",
            "upload_time_iso_8601": "2023-02-03T18:51:25.732805Z",
            "url": "https://files.pythonhosted.org/packages/fd/71/8bbc781bd57be1a98e01ae08e72579f9b7fe79e2a8b2b64ce6b6938240d5/Topsis_Deepankar_Varma_102003431-0.19.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-03 18:51:25",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "topsis-deepankar-varma-102003431"
}
        
Elapsed time: 4.40153s