Topsis-Eshita-102003522


NameTopsis-Eshita-102003522 JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/eshitaarora/Topsis-Eshita-102003522
SummaryCalculate Topsis score and save it in a csv file
upload_time2023-01-23 16:41:15
maintainer
docs_urlNone
authorEshita Arora
requires_python
licenseMIT
keywords topsisscore rank dataframe
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            #Project description
##TOPSIS
What is TOPSIS?
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) came in the 1980s as a multi-criteria-based decision-making (MCDM) method. TOPSIS chooses the alternative of shortest the Euclidean distance from the ideal solution and greatest distance from the negative ideal solution.

##How to Install this Package?
pip install Topsis-Eshita-102003522

##How to Run this Package?
topsis <inputFileName> <weights> <impacts> <resultFileName>

Eg. topsis /Users/Eshita/Desktop/102003522-data.csv "1,1,1,1,1" "+,+,-,+,+" /Users/Eshita/Desktop/result.csv

##Constraints Applied
Number of parameters should be correct i.e. 5.
Print error message if input file doesn't exist.
The impacts and weights should be comma separated.
Impacts should only have +ve or -ve symbols.
Number of columns in the input csv file should be more or equal to 3.
The 2nd to last columns should be in numeric data type.
Number of weights, impacts and columns should be equal.
Input File
Fund Name	P1	P2	P3	P4	P5
M1	0.75	0.56	6.3	51.1	14.68
M2	0.82	0.67	4.2	41.2	11.72
M3	0.89	0.79	6.5	40.2	12.1
M4	0.92	0.85	5.8	49.7	14.32
M6	0.72	0.52	5.3	61.1	16.91
M7	0.69	0.48	3.6	57.9	15.67
M8	0.92	0.85	5.7	31.2	9.67
Output File
Fund Name	P1	P2	P3	P4	P5	TOPSIS Score	Rank
M1	0.32	0.29	0.39	0.36	0.37	0.3655	8
M2	0.35	0.34	0.26	0.29	0.29	0.55	2
M3	0.38	0.41	0.41	0.28	0.30	0.48	5
M4	0.39	0.44	0.36	0.35	0.36	0.57	1
M5	0.33	0.30	0.41	0.39	0.39	0.39	7
M6	0.31	0.27	0.33	0.43	0.42	0.44	6
M7	0.29	0.25	0.22	0.41	0.39	0.50	4
M8	0.39	0.44	0.36	0.22	0.24	0.53	3
License
MIT

##Written By
Name : Eshita Arora
Roll No. : 102003522

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/eshitaarora/Topsis-Eshita-102003522",
    "name": "Topsis-Eshita-102003522",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "TOPSISSCORE,RANK,DATAFRAME",
    "author": "Eshita Arora",
    "author_email": "earora_be20@thapar.edu",
    "download_url": "https://github.com/eshitaarora/Topsis-Eshita-102003522/archive/refs/tags/v0.1.tar.gz",
    "platform": null,
    "description": "#Project description\r\n##TOPSIS\r\nWhat is TOPSIS?\r\nTechnique for Order Preference by Similarity to Ideal Solution (TOPSIS) came in the 1980s as a multi-criteria-based decision-making (MCDM) method. TOPSIS chooses the alternative of shortest the Euclidean distance from the ideal solution and greatest distance from the negative ideal solution.\r\n\r\n##How to Install this Package?\r\npip install Topsis-Eshita-102003522\r\n\r\n##How to Run this Package?\r\ntopsis <inputFileName> <weights> <impacts> <resultFileName>\r\n\r\nEg. topsis /Users/Eshita/Desktop/102003522-data.csv \"1,1,1,1,1\" \"+,+,-,+,+\" /Users/Eshita/Desktop/result.csv\r\n\r\n##Constraints Applied\r\nNumber of parameters should be correct i.e. 5.\r\nPrint error message if input file doesn't exist.\r\nThe impacts and weights should be comma separated.\r\nImpacts should only have +ve or -ve symbols.\r\nNumber of columns in the input csv file should be more or equal to 3.\r\nThe 2nd to last columns should be in numeric data type.\r\nNumber of weights, impacts and columns should be equal.\r\nInput File\r\nFund Name\tP1\tP2\tP3\tP4\tP5\r\nM1\t0.75\t0.56\t6.3\t51.1\t14.68\r\nM2\t0.82\t0.67\t4.2\t41.2\t11.72\r\nM3\t0.89\t0.79\t6.5\t40.2\t12.1\r\nM4\t0.92\t0.85\t5.8\t49.7\t14.32\r\nM6\t0.72\t0.52\t5.3\t61.1\t16.91\r\nM7\t0.69\t0.48\t3.6\t57.9\t15.67\r\nM8\t0.92\t0.85\t5.7\t31.2\t9.67\r\nOutput File\r\nFund Name\tP1\tP2\tP3\tP4\tP5\tTOPSIS Score\tRank\r\nM1\t0.32\t0.29\t0.39\t0.36\t0.37\t0.3655\t8\r\nM2\t0.35\t0.34\t0.26\t0.29\t0.29\t0.55\t2\r\nM3\t0.38\t0.41\t0.41\t0.28\t0.30\t0.48\t5\r\nM4\t0.39\t0.44\t0.36\t0.35\t0.36\t0.57\t1\r\nM5\t0.33\t0.30\t0.41\t0.39\t0.39\t0.39\t7\r\nM6\t0.31\t0.27\t0.33\t0.43\t0.42\t0.44\t6\r\nM7\t0.29\t0.25\t0.22\t0.41\t0.39\t0.50\t4\r\nM8\t0.39\t0.44\t0.36\t0.22\t0.24\t0.53\t3\r\nLicense\r\nMIT\r\n\r\n##Written By\r\nName : Eshita Arora\r\nRoll No. : 102003522\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Calculate Topsis score and save it in a csv file",
    "version": "0.1.2",
    "split_keywords": [
        "topsisscore",
        "rank",
        "dataframe"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b0919e49c3e46082963d310cd7a79ea195548c5d7110f8d2b0ebd815fcf9b251",
                "md5": "1f27b997581708f6116a4a44acb247c9",
                "sha256": "fae2e104537baabebfc433d9ac63d9f8dcacb15d84a5a8121ec0a41d04f4793c"
            },
            "downloads": -1,
            "filename": "Topsis_Eshita_102003522-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1f27b997581708f6116a4a44acb247c9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3766,
            "upload_time": "2023-01-23T16:41:15",
            "upload_time_iso_8601": "2023-01-23T16:41:15.531358Z",
            "url": "https://files.pythonhosted.org/packages/b0/91/9e49c3e46082963d310cd7a79ea195548c5d7110f8d2b0ebd815fcf9b251/Topsis_Eshita_102003522-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-23 16:41:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "eshitaarora",
    "github_project": "Topsis-Eshita-102003522",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "topsis-eshita-102003522"
}
        
Elapsed time: 0.03795s