Project 1
Submitted By: Harjot Singh
Roll Number :102017126
# What is TOPSIS
Technique for Order Preference by Similarity to Ideal
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal
solution.
### In Command Prompt
```
>> topsis data.csv "1,1,1,1" "-,+,-,+"
```
## Example
The decision matrix (`a`) should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.
Attribute price storage camera looks
m1 250 16 12 5
m2 200 16 8 4
m3 300 32 16 3
m4 275 32 8 3
m5 225 16 16 1
<br>
Using TOPSIS the rankings are displayed in the form of a table , with the 1st rank offering the best decision, and last rank offering the worst decision making.
Raw data
{
"_id": null,
"home_page": "https://github.com/HarryGrewal9/Topsis-Harjot-102017126",
"name": "Topsis-Harjot-102017126",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,TOPSIS,MCDM,MCDA,statistics,prescriptive analytics,cli",
"author": "Harjot tSingh",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/a4/9b/a3f76777a85174d97733b5f7ce532ed51f54770c2c412259fc30683779cd/Topsis-Harjot-102017126-1.0.2.tar.gz",
"platform": null,
"description": "Project 1\r\n\r\n\r\nSubmitted By: Harjot Singh \r\nRoll Number :102017126\r\n\r\n\r\n# What is TOPSIS\r\n\r\nTechnique for Order Preference by Similarity to Ideal\r\n\r\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal\r\nsolution.\r\n\r\n### In Command Prompt\r\n```\r\n>> topsis data.csv \"1,1,1,1\" \"-,+,-,+\"\r\n```\r\n\r\n## Example\r\n\r\nThe decision matrix (`a`) should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\r\n\r\nAttribute \tprice\tstorage\tcamera\tlooks \r\nm1\t 250\t 16\t 12\t 5\r\nm2\t 200\t 16 \t 8\t 4\r\nm3\t 300\t 32\t 16\t 3\r\nm4\t 275\t 32\t 8\t 3\r\nm5\t 225\t 16\t 16\t 1\r\n\r\n\r\n<br>\r\nUsing TOPSIS the rankings are displayed in the form of a table , with the 1st rank offering the best decision, and last rank offering the worst decision making.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package implementing TOPSIS for MCDM",
"version": "1.0.2",
"split_keywords": [
"python",
"topsis",
"mcdm",
"mcda",
"statistics",
"prescriptive analytics",
"cli"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a49ba3f76777a85174d97733b5f7ce532ed51f54770c2c412259fc30683779cd",
"md5": "0e43265f99598e6bc7e46e2417ab7558",
"sha256": "e289d272ab08ca032aab40d1298620149b5fba40e2e8ef8994e7ea0ca97c4ff3"
},
"downloads": -1,
"filename": "Topsis-Harjot-102017126-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "0e43265f99598e6bc7e46e2417ab7558",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3348,
"upload_time": "2023-03-17T06:34:00",
"upload_time_iso_8601": "2023-03-17T06:34:00.075044Z",
"url": "https://files.pythonhosted.org/packages/a4/9b/a3f76777a85174d97733b5f7ce532ed51f54770c2c412259fc30683779cd/Topsis-Harjot-102017126-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-17 06:34:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "HarryGrewal9",
"github_project": "Topsis-Harjot-102017126",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "topsis-harjot-102017126"
}