Topsis-Harsh-102203215


NameTopsis-Harsh-102203215 JSON
Version 1.4.9 PyPI version JSON
download
home_pageNone
SummaryA Python package for TOPSIS ranking with CLI support for CSV/Excel files
upload_time2025-01-19 13:44:04
maintainerNone
docs_urlNone
authorHarsh Lakyan
requires_python>=3.6
licenseMIT
keywords topsis multi-criteria decision making python pypi csv xlsx cli
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Topsis-Harsh-102203215

**Topsis-Harsh-102203215** is a Python package for performing the **TOPSIS** (Technique for Order of Preference by Similarity to Ideal Solution) ranking method on decision matrices. This package allows you to rank alternatives based on multiple criteria, with support for both CLI and programmatic usage. It also provides CLI functionality for processing CSV and Excel files.

## Installation

You can install the package from PyPI using pip:

```bash
pip install Topsis-Harsh-102203215
```

# Usage
CLI Usage
After installation, you can use the package directly from the command line. The general syntax for the CLI is:

topsis <input_file> <weights> <impacts> <output_file>

input_file: The path to a CSV file containing the decision matrix (alternatives x criteria).

weights: A comma-separated list of weights corresponding to each criterion (e.g., 1,1,1,1).

impacts: A comma-separated list of impacts for each criterion, where + indicates a benefit and - indicates a cost (e.g., +,+, -, +).

output_file: The path where the output will be saved.


Example:
```bash
topsis input.csv "1,1,1,1" "+,+,-,+" output.csv
```


# Call the topsis function
rankings, scores = topsis(data, weights, impacts)

# Print the rankings and scores
print("Rankings:", rankings)
print("Scores:", scores)


# Features

TOPSIS: Perform multi-criteria decision-making using the TOPSIS method.

CLI: Command-line interface to process decision matrices in CSV files and output rankings.

Supports CSV Files: Easily read and write decision matrices in CSV format.

# Requirements

Python 3.6 or higher
numpy >= 1.21.0
pandas >= 1.3.0

# License

This project is licensed under the MIT License - see the LICENSE file for details.

# Author

Harsh Lakyan
Email: harshlakyan@gmail.com
GitHub: https://github.com/harshlakyan51

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Topsis-Harsh-102203215",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "topsis, multi-criteria decision making, python, pypi, csv, xlsx, cli",
    "author": "Harsh Lakyan",
    "author_email": "harshlakyan@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/55/d2/9918d8bcf15d8296d1ece480db2ffad9a88790e0cb32cea8ee839783d894/Topsis-Harsh-102203215-1.4.9.tar.gz",
    "platform": null,
    "description": "# Topsis-Harsh-102203215\r\n\r\n**Topsis-Harsh-102203215** is a Python package for performing the **TOPSIS** (Technique for Order of Preference by Similarity to Ideal Solution) ranking method on decision matrices. This package allows you to rank alternatives based on multiple criteria, with support for both CLI and programmatic usage. It also provides CLI functionality for processing CSV and Excel files.\r\n\r\n## Installation\r\n\r\nYou can install the package from PyPI using pip:\r\n\r\n```bash\r\npip install Topsis-Harsh-102203215\r\n```\r\n\r\n# Usage\r\nCLI Usage\r\nAfter installation, you can use the package directly from the command line. The general syntax for the CLI is:\r\n\r\ntopsis <input_file> <weights> <impacts> <output_file>\r\n\r\ninput_file: The path to a CSV file containing the decision matrix (alternatives x criteria).\r\n\r\nweights: A comma-separated list of weights corresponding to each criterion (e.g., 1,1,1,1).\r\n\r\nimpacts: A comma-separated list of impacts for each criterion, where + indicates a benefit and - indicates a cost (e.g., +,+, -, +).\r\n\r\noutput_file: The path where the output will be saved.\r\n\r\n\r\nExample:\r\n```bash\r\ntopsis input.csv \"1,1,1,1\" \"+,+,-,+\" output.csv\r\n```\r\n\r\n\r\n# Call the topsis function\r\nrankings, scores = topsis(data, weights, impacts)\r\n\r\n# Print the rankings and scores\r\nprint(\"Rankings:\", rankings)\r\nprint(\"Scores:\", scores)\r\n\r\n\r\n# Features\r\n\r\nTOPSIS: Perform multi-criteria decision-making using the TOPSIS method.\r\n\r\nCLI: Command-line interface to process decision matrices in CSV files and output rankings.\r\n\r\nSupports CSV Files: Easily read and write decision matrices in CSV format.\r\n\r\n# Requirements\r\n\r\nPython 3.6 or higher\r\nnumpy >= 1.21.0\r\npandas >= 1.3.0\r\n\r\n# License\r\n\r\nThis project is licensed under the MIT License - see the LICENSE file for details.\r\n\r\n# Author\r\n\r\nHarsh Lakyan\r\nEmail: harshlakyan@gmail.com\r\nGitHub: https://github.com/harshlakyan51\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package for TOPSIS ranking with CLI support for CSV/Excel files",
    "version": "1.4.9",
    "project_urls": null,
    "split_keywords": [
        "topsis",
        " multi-criteria decision making",
        " python",
        " pypi",
        " csv",
        " xlsx",
        " cli"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8792db0a1dd0e6ca7c7e3ab1c28cac80e9f1ca32c1d9dd6437bdd440172d1715",
                "md5": "7495da4a401fa8a0d08d6271603fd19a",
                "sha256": "0ad33cc620f731964211b431410523f3f16f7c466ee07efd2194365478e86330"
            },
            "downloads": -1,
            "filename": "Topsis_Harsh_102203215-1.4.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7495da4a401fa8a0d08d6271603fd19a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 5149,
            "upload_time": "2025-01-19T13:44:02",
            "upload_time_iso_8601": "2025-01-19T13:44:02.015238Z",
            "url": "https://files.pythonhosted.org/packages/87/92/db0a1dd0e6ca7c7e3ab1c28cac80e9f1ca32c1d9dd6437bdd440172d1715/Topsis_Harsh_102203215-1.4.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "55d29918d8bcf15d8296d1ece480db2ffad9a88790e0cb32cea8ee839783d894",
                "md5": "af9b61607376afc9cc411d7f133e07d2",
                "sha256": "3d2d98b1bb4dd47d1271b2a34b3b6bc4c334ac066fd88aa6275e2c0ccf08523b"
            },
            "downloads": -1,
            "filename": "Topsis-Harsh-102203215-1.4.9.tar.gz",
            "has_sig": false,
            "md5_digest": "af9b61607376afc9cc411d7f133e07d2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 4651,
            "upload_time": "2025-01-19T13:44:04",
            "upload_time_iso_8601": "2025-01-19T13:44:04.108362Z",
            "url": "https://files.pythonhosted.org/packages/55/d2/9918d8bcf15d8296d1ece480db2ffad9a88790e0cb32cea8ee839783d894/Topsis-Harsh-102203215-1.4.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-19 13:44:04",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-harsh-102203215"
}
        
Elapsed time: 0.43286s