Topsis-Ishan-102103408


NameTopsis-Ishan-102103408 JSON
Version 1.0.0 PyPI version JSON
download
home_page
SummaryImplementation of Topsis
upload_time2024-02-07 17:43:32
maintainer
docs_urlNone
authorIshan Mathur
requires_python
licenseMIT License
keywords topsis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Project Description
- for: Assignment-1(UCS654)
- Submitted by: Ishan Mathur
- Roll no: 102103408
- Group: 3COE15

# TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)

This Python script implements the TOPSIS method for multi-criteria decision-making. It takes a CSV file containing a decision matrix, weights, and impacts as input, and produces a ranked result based on the TOPSIS score.

## Installation
```bash
pip install Topsis-Ishan-102103408
```

## Usage

```bash
from Topsis_Ishan_102103408.topsis import topsis 
inputFile="sample.csv"
weights="1,1,1,1"
impacts="-,+,+,+"
resultFile="result.csv" 
topsis(inputFile, weights, impacts, resultFile)
```

OR 

You can use this package via command line as:
```bash
python -m Topsis_Ishan_102103408.topsis [InputDataFile as .csv] [Weights as a string] [Impacts as a string] [ResultFileName as .csv]
```

- `InputDataFile`: Path to the CSV file containing the input data.
- `Weights`: Comma-separated weights for each criterion.
- `Impacts`: Comma-separated impact direction for each criterion (`+` for maximization, `-` for minimization).
- `ResultFileName`: Name of the file to save the TOPSIS results.

## Requirements

- Python 3
- pandas
- numpy

## Input File Format
The input data should be in a CSV format with the following structure:

| Fund Name | P1   | P2   | P3   | P4   | P5    |
|-----------|------|------|------|------|-------|
| M1        | 0.84 | 0.71 | 6.7  | 42.1 | 12.59 |
| M2        | 0.91 | 0.83 | 7    | 31.7 | 10.11 |
| M3        | 0.79 | 0.62 | 4.8  | 46.7 | 13.23 |
| M4        | 0.78 | 0.61 | 6.4  | 42.4 | 12.55 |
| M5        | 0.94 | 0.88 | 3.6  | 62.2 | 16.91 |
| M6        | 0.88 | 0.77 | 6.5  | 51.5 | 14.91 |
| M7        | 0.66 | 0.44 | 5.3  | 48.9 | 13.83 |
| M8        | 0.93 | 0.86 | 3.4  | 37   | 10.55 |


## Output

The script generates a CSV file containing the TOPSIS score and rank for each object:

| Fund Name | P1   | P2   | P3   | P4   | P5    | Topsis Score         | Rank |
|-----------|------|------|------|------|-------|----------------------|------|
| M1        | 0.84 | 0.71 | 6.7  | 42.1 | 12.59 | 0.41855328299643013 | 7.0  |
| M2        | 0.91 | 0.83 | 7.0  | 31.7 | 10.11 | 0.4663977143091959  | 5.0  |
| M3        | 0.79 | 0.62 | 4.8  | 46.7 | 13.23 | 0.5374784843237046  | 3.0  |
| M4        | 0.78 | 0.61 | 6.4  | 42.4 | 12.55 | 0.4295182212044884  | 6.0  |
| M5        | 0.94 | 0.88 | 3.6  | 62.2 | 16.91 | 0.5453066145383307  | 2.0  |
| M6        | 0.88 | 0.77 | 6.5  | 51.5 | 14.91 | 0.39814192807166954 | 8.0  |
| M7        | 0.66 | 0.44 | 5.3  | 48.9 | 13.83 | 0.4743648907682155  | 4.0  |
| M8        | 0.93 | 0.86 | 3.4  | 37.0 | 10.55 | 0.6392872727749049  | 1.0  |


## Error Handling

- If the input file is not found, an error message will be displayed.
- If the number of weights, impacts, or columns in the decision matrix is incorrect, a `ValueError` will be raised.
- If the columns from the 2nd to the last do not contain numeric values, a `ValueError` will be raised.
- Any unexpected errors during the execution will be displayed.

## LICENSE

(c) 2024 Ishan Mathur

This project is licensed under the [MIT License](LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Ishan-102103408",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Topsis",
    "author": "Ishan Mathur",
    "author_email": "imathur_be21@thapar.edu",
    "download_url": "https://files.pythonhosted.org/packages/ae/be/190e531eabcf92450261cb613678ce6d4caab475d653652b07fd3d19051b/Topsis-Ishan-102103408-1.0.0.tar.gz",
    "platform": null,
    "description": "# Project Description\r\n- for: Assignment-1(UCS654)\r\n- Submitted by: Ishan Mathur\r\n- Roll no: 102103408\r\n- Group: 3COE15\r\n\r\n# TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)\r\n\r\nThis Python script implements the TOPSIS method for multi-criteria decision-making. It takes a CSV file containing a decision matrix, weights, and impacts as input, and produces a ranked result based on the TOPSIS score.\r\n\r\n## Installation\r\n```bash\r\npip install Topsis-Ishan-102103408\r\n```\r\n\r\n## Usage\r\n\r\n```bash\r\nfrom Topsis_Ishan_102103408.topsis import topsis \r\ninputFile=\"sample.csv\"\r\nweights=\"1,1,1,1\"\r\nimpacts=\"-,+,+,+\"\r\nresultFile=\"result.csv\" \r\ntopsis(inputFile, weights, impacts, resultFile)\r\n```\r\n\r\nOR \r\n\r\nYou can use this package via command line as:\r\n```bash\r\npython -m Topsis_Ishan_102103408.topsis [InputDataFile as .csv] [Weights as a string] [Impacts as a string] [ResultFileName as .csv]\r\n```\r\n\r\n- `InputDataFile`: Path to the CSV file containing the input data.\r\n- `Weights`: Comma-separated weights for each criterion.\r\n- `Impacts`: Comma-separated impact direction for each criterion (`+` for maximization, `-` for minimization).\r\n- `ResultFileName`: Name of the file to save the TOPSIS results.\r\n\r\n## Requirements\r\n\r\n- Python 3\r\n- pandas\r\n- numpy\r\n\r\n## Input File Format\r\nThe input data should be in a CSV format with the following structure:\r\n\r\n| Fund Name | P1   | P2   | P3   | P4   | P5    |\r\n|-----------|------|------|------|------|-------|\r\n| M1        | 0.84 | 0.71 | 6.7  | 42.1 | 12.59 |\r\n| M2        | 0.91 | 0.83 | 7    | 31.7 | 10.11 |\r\n| M3        | 0.79 | 0.62 | 4.8  | 46.7 | 13.23 |\r\n| M4        | 0.78 | 0.61 | 6.4  | 42.4 | 12.55 |\r\n| M5        | 0.94 | 0.88 | 3.6  | 62.2 | 16.91 |\r\n| M6        | 0.88 | 0.77 | 6.5  | 51.5 | 14.91 |\r\n| M7        | 0.66 | 0.44 | 5.3  | 48.9 | 13.83 |\r\n| M8        | 0.93 | 0.86 | 3.4  | 37   | 10.55 |\r\n\r\n\r\n## Output\r\n\r\nThe script generates a CSV file containing the TOPSIS score and rank for each object:\r\n\r\n| Fund Name | P1   | P2   | P3   | P4   | P5    | Topsis Score         | Rank |\r\n|-----------|------|------|------|------|-------|----------------------|------|\r\n| M1        | 0.84 | 0.71 | 6.7  | 42.1 | 12.59 | 0.41855328299643013 | 7.0  |\r\n| M2        | 0.91 | 0.83 | 7.0  | 31.7 | 10.11 | 0.4663977143091959  | 5.0  |\r\n| M3        | 0.79 | 0.62 | 4.8  | 46.7 | 13.23 | 0.5374784843237046  | 3.0  |\r\n| M4        | 0.78 | 0.61 | 6.4  | 42.4 | 12.55 | 0.4295182212044884  | 6.0  |\r\n| M5        | 0.94 | 0.88 | 3.6  | 62.2 | 16.91 | 0.5453066145383307  | 2.0  |\r\n| M6        | 0.88 | 0.77 | 6.5  | 51.5 | 14.91 | 0.39814192807166954 | 8.0  |\r\n| M7        | 0.66 | 0.44 | 5.3  | 48.9 | 13.83 | 0.4743648907682155  | 4.0  |\r\n| M8        | 0.93 | 0.86 | 3.4  | 37.0 | 10.55 | 0.6392872727749049  | 1.0  |\r\n\r\n\r\n## Error Handling\r\n\r\n- If the input file is not found, an error message will be displayed.\r\n- If the number of weights, impacts, or columns in the decision matrix is incorrect, a `ValueError` will be raised.\r\n- If the columns from the 2nd to the last do not contain numeric values, a `ValueError` will be raised.\r\n- Any unexpected errors during the execution will be displayed.\r\n\r\n## LICENSE\r\n\r\n(c) 2024 Ishan Mathur\r\n\r\nThis project is licensed under the [MIT License](LICENSE).\r\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Implementation of Topsis",
    "version": "1.0.0",
    "project_urls": null,
    "split_keywords": [
        "topsis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "25c673d151e4ef36835ea131dfc3e472b47db7c77d0107c9264b0ee159d68d69",
                "md5": "2ce748471dce7808a9bb22b93e1a7972",
                "sha256": "5f53acd2b0a579d1f6602aba01a2d6384cbf45fabd9470eb646f8310b4f877ff"
            },
            "downloads": -1,
            "filename": "Topsis_Ishan_102103408-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2ce748471dce7808a9bb22b93e1a7972",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5039,
            "upload_time": "2024-02-07T17:43:28",
            "upload_time_iso_8601": "2024-02-07T17:43:28.861938Z",
            "url": "https://files.pythonhosted.org/packages/25/c6/73d151e4ef36835ea131dfc3e472b47db7c77d0107c9264b0ee159d68d69/Topsis_Ishan_102103408-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aebe190e531eabcf92450261cb613678ce6d4caab475d653652b07fd3d19051b",
                "md5": "2d9f049636db123d864d86eb2270da32",
                "sha256": "8f5ce7cb8405d1e101b6c2d85f482a4dd9659335215b2ce821b90e2c347284f4"
            },
            "downloads": -1,
            "filename": "Topsis-Ishan-102103408-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2d9f049636db123d864d86eb2270da32",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4588,
            "upload_time": "2024-02-07T17:43:32",
            "upload_time_iso_8601": "2024-02-07T17:43:32.954029Z",
            "url": "https://files.pythonhosted.org/packages/ae/be/190e531eabcf92450261cb613678ce6d4caab475d653652b07fd3d19051b/Topsis-Ishan-102103408-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-07 17:43:32",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-ishan-102103408"
}
        
Elapsed time: 0.19732s