Topsis-Kriti-102017079


NameTopsis-Kriti-102017079 JSON
Version 1.4 PyPI version JSON
download
home_pagehttps://github.com/Kriti-bit/Topsis-Kriti-102017079
SummaryA convenient python package for Topsis rank and score calculation for a given dataset, weights and impacts
upload_time2023-01-21 14:32:24
maintainer
docs_urlNone
authorKriti Singhal
requires_python
licenseMIT
keywords python topsis mcdm mcda statistics prescriptive analytics cli
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Topsis

## What is TOPSIS?

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method.
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,
and greatest distance from the negative-ideal solution.

<br>

## How to install this package:

```
>> pip install Topsis-Kriti-102017079
```

### In Command Prompt

```
>> topsis data.csv "1,1,1,1" "+,+,-,+" result.csv
```

## Input file (data.csv)

The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.

| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy |
| ----- | ----------- | ------------- | ---- | -------- |
| M1    | 0.79        | 0.62          | 1.25 | 60.89    |
| M2    | 0.66        | 0.44          | 2.89 | 63.07    |
| M3    | 0.56        | 0.31          | 1.57 | 62.87    |
| M4    | 0.82        | 0.67          | 2.68 | 70.19    |
| M5    | 0.75        | 0.56          | 1.3  | 80.39    |

Weights (`weights`) is not already normalised will be normalised later in the code.

Information of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.

<br>

## Output file (result.csv)

| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score  | Rank |
| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |
| M1    | 0.79        | 0.62          | 1.25 | 60.89    | 0.7722 | 2    |
| M2    | 0.66        | 0.44          | 2.89 | 63.07    | 0.2255 | 5    |
| M3    | 0.56        | 0.31          | 1.57 | 62.87    | 0.4388 | 4    |
| M4    | 0.82        | 0.67          | 2.68 | 70.19    | 0.5238 | 3    |
| M5    | 0.75        | 0.56          | 1.3  | 80.39    | 0.8113 | 1    |

<br>
The output file contains columns of input file along with two additional columns having Score and Rank

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Kriti-bit/Topsis-Kriti-102017079",
    "name": "Topsis-Kriti-102017079",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,TOPSIS,MCDM,MCDA,statistics,prescriptive analytics,cli",
    "author": "Kriti Singhal",
    "author_email": "kritisinghal711@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/a0/a2/f96d22c483757b9d59906a070a8803bbbc9e8d2ff91eea37ab1664f419d1/Topsis-Kriti-102017079-1.4.tar.gz",
    "platform": null,
    "description": "# Topsis\n\n## What is TOPSIS?\n\nTechnique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method.\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,\nand greatest distance from the negative-ideal solution.\n\n<br>\n\n## How to install this package:\n\n```\n>> pip install Topsis-Kriti-102017079\n```\n\n### In Command Prompt\n\n```\n>> topsis data.csv \"1,1,1,1\" \"+,+,-,+\" result.csv\n```\n\n## Input file (data.csv)\n\nThe decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\n\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy |\n| ----- | ----------- | ------------- | ---- | -------- |\n| M1    | 0.79        | 0.62          | 1.25 | 60.89    |\n| M2    | 0.66        | 0.44          | 2.89 | 63.07    |\n| M3    | 0.56        | 0.31          | 1.57 | 62.87    |\n| M4    | 0.82        | 0.67          | 2.68 | 70.19    |\n| M5    | 0.75        | 0.56          | 1.3  | 80.39    |\n\nWeights (`weights`) is not already normalised will be normalised later in the code.\n\nInformation of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.\n\n<br>\n\n## Output file (result.csv)\n\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score  | Rank |\n| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |\n| M1    | 0.79        | 0.62          | 1.25 | 60.89    | 0.7722 | 2    |\n| M2    | 0.66        | 0.44          | 2.89 | 63.07    | 0.2255 | 5    |\n| M3    | 0.56        | 0.31          | 1.57 | 62.87    | 0.4388 | 4    |\n| M4    | 0.82        | 0.67          | 2.68 | 70.19    | 0.5238 | 3    |\n| M5    | 0.75        | 0.56          | 1.3  | 80.39    | 0.8113 | 1    |\n\n<br>\nThe output file contains columns of input file along with two additional columns having Score and Rank\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A convenient python package for Topsis rank and score calculation for a given dataset, weights and impacts",
    "version": "1.4",
    "split_keywords": [
        "python",
        "topsis",
        "mcdm",
        "mcda",
        "statistics",
        "prescriptive analytics",
        "cli"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "850c61ba918288cbb7526186db51be404d2146ad89abbc0f3e608aeb1f9eb28e",
                "md5": "dc047231f759ab22108bb67ef266a90a",
                "sha256": "abad225ae19452c9c304ab552748b9d5dc3eed9602ddd97813594ac13694473d"
            },
            "downloads": -1,
            "filename": "Topsis_Kriti_102017079-1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dc047231f759ab22108bb67ef266a90a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4979,
            "upload_time": "2023-01-21T14:32:22",
            "upload_time_iso_8601": "2023-01-21T14:32:22.784434Z",
            "url": "https://files.pythonhosted.org/packages/85/0c/61ba918288cbb7526186db51be404d2146ad89abbc0f3e608aeb1f9eb28e/Topsis_Kriti_102017079-1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a0a2f96d22c483757b9d59906a070a8803bbbc9e8d2ff91eea37ab1664f419d1",
                "md5": "1dc77ff4c5917cd04e928003ad4c2e03",
                "sha256": "7387e284d20b4fb40fd687e1c2c59e915e048bfb8f65c86fac723588ad153cbb"
            },
            "downloads": -1,
            "filename": "Topsis-Kriti-102017079-1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "1dc77ff4c5917cd04e928003ad4c2e03",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4912,
            "upload_time": "2023-01-21T14:32:24",
            "upload_time_iso_8601": "2023-01-21T14:32:24.477201Z",
            "url": "https://files.pythonhosted.org/packages/a0/a2/f96d22c483757b9d59906a070a8803bbbc9e8d2ff91eea37ab1664f419d1/Topsis-Kriti-102017079-1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-21 14:32:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Kriti-bit",
    "github_project": "Topsis-Kriti-102017079",
    "lcname": "topsis-kriti-102017079"
}
        
Elapsed time: 0.09236s