# Topsis
## What is TOPSIS?
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method.
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,
and greatest distance from the negative-ideal solution.
<br>
## How to install this package:
```
>> pip install Topsis-Kriti-102017079
```
### In Command Prompt
```
>> topsis data.csv "1,1,1,1" "+,+,-,+" result.csv
```
## Input file (data.csv)
The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.
| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy |
| ----- | ----------- | ------------- | ---- | -------- |
| M1 | 0.79 | 0.62 | 1.25 | 60.89 |
| M2 | 0.66 | 0.44 | 2.89 | 63.07 |
| M3 | 0.56 | 0.31 | 1.57 | 62.87 |
| M4 | 0.82 | 0.67 | 2.68 | 70.19 |
| M5 | 0.75 | 0.56 | 1.3 | 80.39 |
Weights (`weights`) is not already normalised will be normalised later in the code.
Information of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.
<br>
## Output file (result.csv)
| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score | Rank |
| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |
| M1 | 0.79 | 0.62 | 1.25 | 60.89 | 0.7722 | 2 |
| M2 | 0.66 | 0.44 | 2.89 | 63.07 | 0.2255 | 5 |
| M3 | 0.56 | 0.31 | 1.57 | 62.87 | 0.4388 | 4 |
| M4 | 0.82 | 0.67 | 2.68 | 70.19 | 0.5238 | 3 |
| M5 | 0.75 | 0.56 | 1.3 | 80.39 | 0.8113 | 1 |
<br>
The output file contains columns of input file along with two additional columns having Score and Rank
Raw data
{
"_id": null,
"home_page": "https://github.com/Kriti-bit/Topsis-Kriti-102017079",
"name": "Topsis-Kriti-102017079",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,TOPSIS,MCDM,MCDA,statistics,prescriptive analytics,cli",
"author": "Kriti Singhal",
"author_email": "kritisinghal711@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a0/a2/f96d22c483757b9d59906a070a8803bbbc9e8d2ff91eea37ab1664f419d1/Topsis-Kriti-102017079-1.4.tar.gz",
"platform": null,
"description": "# Topsis\n\n## What is TOPSIS?\n\nTechnique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method.\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,\nand greatest distance from the negative-ideal solution.\n\n<br>\n\n## How to install this package:\n\n```\n>> pip install Topsis-Kriti-102017079\n```\n\n### In Command Prompt\n\n```\n>> topsis data.csv \"1,1,1,1\" \"+,+,-,+\" result.csv\n```\n\n## Input file (data.csv)\n\nThe decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\n\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy |\n| ----- | ----------- | ------------- | ---- | -------- |\n| M1 | 0.79 | 0.62 | 1.25 | 60.89 |\n| M2 | 0.66 | 0.44 | 2.89 | 63.07 |\n| M3 | 0.56 | 0.31 | 1.57 | 62.87 |\n| M4 | 0.82 | 0.67 | 2.68 | 70.19 |\n| M5 | 0.75 | 0.56 | 1.3 | 80.39 |\n\nWeights (`weights`) is not already normalised will be normalised later in the code.\n\nInformation of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.\n\n<br>\n\n## Output file (result.csv)\n\n| Model | Correlation | R<sup>2</sup> | RMSE | Accuracy | Score | Rank |\n| ----- | ----------- | ------------- | ---- | -------- | ------ | ---- |\n| M1 | 0.79 | 0.62 | 1.25 | 60.89 | 0.7722 | 2 |\n| M2 | 0.66 | 0.44 | 2.89 | 63.07 | 0.2255 | 5 |\n| M3 | 0.56 | 0.31 | 1.57 | 62.87 | 0.4388 | 4 |\n| M4 | 0.82 | 0.67 | 2.68 | 70.19 | 0.5238 | 3 |\n| M5 | 0.75 | 0.56 | 1.3 | 80.39 | 0.8113 | 1 |\n\n<br>\nThe output file contains columns of input file along with two additional columns having Score and Rank\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A convenient python package for Topsis rank and score calculation for a given dataset, weights and impacts",
"version": "1.4",
"split_keywords": [
"python",
"topsis",
"mcdm",
"mcda",
"statistics",
"prescriptive analytics",
"cli"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "850c61ba918288cbb7526186db51be404d2146ad89abbc0f3e608aeb1f9eb28e",
"md5": "dc047231f759ab22108bb67ef266a90a",
"sha256": "abad225ae19452c9c304ab552748b9d5dc3eed9602ddd97813594ac13694473d"
},
"downloads": -1,
"filename": "Topsis_Kriti_102017079-1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dc047231f759ab22108bb67ef266a90a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4979,
"upload_time": "2023-01-21T14:32:22",
"upload_time_iso_8601": "2023-01-21T14:32:22.784434Z",
"url": "https://files.pythonhosted.org/packages/85/0c/61ba918288cbb7526186db51be404d2146ad89abbc0f3e608aeb1f9eb28e/Topsis_Kriti_102017079-1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a0a2f96d22c483757b9d59906a070a8803bbbc9e8d2ff91eea37ab1664f419d1",
"md5": "1dc77ff4c5917cd04e928003ad4c2e03",
"sha256": "7387e284d20b4fb40fd687e1c2c59e915e048bfb8f65c86fac723588ad153cbb"
},
"downloads": -1,
"filename": "Topsis-Kriti-102017079-1.4.tar.gz",
"has_sig": false,
"md5_digest": "1dc77ff4c5917cd04e928003ad4c2e03",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4912,
"upload_time": "2023-01-21T14:32:24",
"upload_time_iso_8601": "2023-01-21T14:32:24.477201Z",
"url": "https://files.pythonhosted.org/packages/a0/a2/f96d22c483757b9d59906a070a8803bbbc9e8d2ff91eea37ab1664f419d1/Topsis-Kriti-102017079-1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-21 14:32:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "Kriti-bit",
"github_project": "Topsis-Kriti-102017079",
"lcname": "topsis-kriti-102017079"
}