Topsis-Mohit-102397005


NameTopsis-Mohit-102397005 JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryTopsis technique for MCDM
upload_time2025-01-19 20:53:06
maintainerNone
docs_urlNone
authorMohit Bansal
requires_pythonNone
licenseNone
keywords python topsis mcdm decision making
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS Package

This package implements the `TOPSIS` technique for Multi-Criteria Decision Making Problems.

## Installation

You can install the package using `pip`. First,run:
```
pip install Topsis-Mohit-102397005
```

## Usage
After installing the package, you can use it from the command line.

## Command Line Usage
To use the TOPSIS package from the command line, run the following command:
```
python -m Topsis-Mohit-102397005 inputFileName weights impacts resultFileName
```

### Example
Suppose you have an input file `data.csv` with the following content:
```
Model,Price,Quality,Service:
M1,25000,7,8
M2,30000,8,6
M3,27500,9,7
M4,28000,6,9
```

You can run the following command:
```
python -m Topsis-Mohit-102397005 data.csv "0.25,0.25,0.5" "-,+,+" result.csv
```
This is the `result.csv` file created after running the command:
```
Model,Price,Quality,Service,TOPSIS Score,Rank
M1,25000,7,8,0.5345,2
M2,30000,8,6,0.3083,4
M3,27500,9,7,0.6912,1
M4,28000,6,9,0.4657,3
```

## Function Usage
You can also use the TOPSIS package by calling the function directly in your Python code.

### Example
```
from Topsis-Mohit-102397005 import run_topsis

inputFileName = 'data.csv'
weights = '0.25,0.25,0.5'
impacts = '-,+,+'
resultFileName = 'result.csv'

run_topsis(inputFileName, weights, impacts, resultFileName)
```

This will produce the same output as the command line example, saving the results to `result.csv`.

## Parameters

- `inputFileName`: The name of the input CSV file containing the data.
- `weights`: A string of weights separated by commas (e.g., "1,1,1").
- `impacts`: A string of impacts separated by commas, where each impact is either + or - (e.g., "+,+,-").
- `resultFileName`: The name of the output CSV file where the results will be saved.


## About
- `Author`: Mohit Bansal
- `Github`: https://github.com/Mohit-Bansal-31/Topsis-Mohit-102397005
- `Contact`: mohitbansal0031@gmail.com
- `Date`: 20-Jan-2025



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Topsis-Mohit-102397005",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, topsis, mcdm, decision making",
    "author": "Mohit Bansal",
    "author_email": "mohitbansal0031@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/17/4b/c116d3f03238fd59ea6d15914b225684e64ad7652d560137956634996b2b/Topsis-Mohit-102397005-0.0.2.tar.gz",
    "platform": null,
    "description": "# TOPSIS Package\r\n\r\nThis package implements the `TOPSIS` technique for Multi-Criteria Decision Making Problems.\r\n\r\n## Installation\r\n\r\nYou can install the package using `pip`. First,run:\r\n```\r\npip install Topsis-Mohit-102397005\r\n```\r\n\r\n## Usage\r\nAfter installing the package, you can use it from the command line.\r\n\r\n## Command Line Usage\r\nTo use the TOPSIS package from the command line, run the following command:\r\n```\r\npython -m Topsis-Mohit-102397005 inputFileName weights impacts resultFileName\r\n```\r\n\r\n### Example\r\nSuppose you have an input file `data.csv` with the following content:\r\n```\r\nModel,Price,Quality,Service:\r\nM1,25000,7,8\r\nM2,30000,8,6\r\nM3,27500,9,7\r\nM4,28000,6,9\r\n```\r\n\r\nYou can run the following command:\r\n```\r\npython -m Topsis-Mohit-102397005 data.csv \"0.25,0.25,0.5\" \"-,+,+\" result.csv\r\n```\r\nThis is the `result.csv` file created after running the command:\r\n```\r\nModel,Price,Quality,Service,TOPSIS Score,Rank\r\nM1,25000,7,8,0.5345,2\r\nM2,30000,8,6,0.3083,4\r\nM3,27500,9,7,0.6912,1\r\nM4,28000,6,9,0.4657,3\r\n```\r\n\r\n## Function Usage\r\nYou can also use the TOPSIS package by calling the function directly in your Python code.\r\n\r\n### Example\r\n```\r\nfrom Topsis-Mohit-102397005 import run_topsis\r\n\r\ninputFileName = 'data.csv'\r\nweights = '0.25,0.25,0.5'\r\nimpacts = '-,+,+'\r\nresultFileName = 'result.csv'\r\n\r\nrun_topsis(inputFileName, weights, impacts, resultFileName)\r\n```\r\n\r\nThis will produce the same output as the command line example, saving the results to `result.csv`.\r\n\r\n## Parameters\r\n\r\n- `inputFileName`: The name of the input CSV file containing the data.\r\n- `weights`: A string of weights separated by commas (e.g., \"1,1,1\").\r\n- `impacts`: A string of impacts separated by commas, where each impact is either + or - (e.g., \"+,+,-\").\r\n- `resultFileName`: The name of the output CSV file where the results will be saved.\r\n\r\n\r\n## About\r\n- `Author`: Mohit Bansal\r\n- `Github`: https://github.com/Mohit-Bansal-31/Topsis-Mohit-102397005\r\n- `Contact`: mohitbansal0031@gmail.com\r\n- `Date`: 20-Jan-2025\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Topsis technique for MCDM",
    "version": "0.0.2",
    "project_urls": null,
    "split_keywords": [
        "python",
        " topsis",
        " mcdm",
        " decision making"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "38b3ec2c30d61944ad66ab62d402b1a12d106f99c847292531d52bb0ac7440e0",
                "md5": "b2b53a919d5fc644562979d7ac5ef279",
                "sha256": "2fd54b69f4fb69400ca0f6e28efb8597293021682a41165381cef2d7973e857e"
            },
            "downloads": -1,
            "filename": "Topsis_Mohit_102397005-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b2b53a919d5fc644562979d7ac5ef279",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4656,
            "upload_time": "2025-01-19T20:53:04",
            "upload_time_iso_8601": "2025-01-19T20:53:04.825385Z",
            "url": "https://files.pythonhosted.org/packages/38/b3/ec2c30d61944ad66ab62d402b1a12d106f99c847292531d52bb0ac7440e0/Topsis_Mohit_102397005-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "174bc116d3f03238fd59ea6d15914b225684e64ad7652d560137956634996b2b",
                "md5": "039211750fb06a918635677225f64cff",
                "sha256": "d0a7f6d5000b5bf3e946fbe862ea163e1ba9dcd41f86a057a075eed4462a624e"
            },
            "downloads": -1,
            "filename": "Topsis-Mohit-102397005-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "039211750fb06a918635677225f64cff",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4121,
            "upload_time": "2025-01-19T20:53:06",
            "upload_time_iso_8601": "2025-01-19T20:53:06.483892Z",
            "url": "https://files.pythonhosted.org/packages/17/4b/c116d3f03238fd59ea6d15914b225684e64ad7652d560137956634996b2b/Topsis-Mohit-102397005-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-19 20:53:06",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-mohit-102397005"
}
        
Elapsed time: 0.38142s