Topsis-Namish-102103631


NameTopsis-Namish-102103631 JSON
Version 0.1.0 PyPI version JSON
download
home_page
SummaryTopsis Package by Namish Jindal
upload_time2024-01-28 14:42:50
maintainer
docs_urlNone
authorNamish Jindal
requires_python
license
keywords python topsis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Topsis Python Package

Made by Namish Jindal

## About

Topsis (Technique for Order of Preference by Similarity to Ideal Solution) is a multi-criteria decision-making method used to identify the best alternative from a set of options.

## Installation

 Use package manager pip install the package 

 ```sh

 pip install Topsis-Namish-102103631 

 ```

## Usage

- Command-line Input: `python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>`. 

- Input-File Type: Only Excel file will be accepted as input file.

- The second to last columns of the data file MUST contain NUMERIC values.

-  Impacts are either '+' or '-' 

- Weights and Impacts should be enclosed in double quotes and separated by commas.

- Output: 'Topsis Score' column and a 'Rank' column to the data and saves the results to a CSV file specified in the command-line arguments.

## Example



**Command-Line-Input**

```sh

 python 102103631.py 102103631-data.csv “1,1,1,1,1” “+,+,-,+,+” 102103631-result.csv

```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Namish-102103631",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,topsis",
    "author": "Namish Jindal",
    "author_email": "<namishjindal13@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/3e/bb/3ba072e8aed34b21f922b3664baf133dcc52443db51f1c7d747d1c861f78/Topsis-Namish-102103631-0.1.0.tar.gz",
    "platform": null,
    "description": "\r\n# Topsis Python Package\r\n\r\nMade by Namish Jindal\r\n\r\n## About\r\n\r\nTopsis (Technique for Order of Preference by Similarity to Ideal Solution) is a multi-criteria decision-making method used to identify the best alternative from a set of options.\r\n\r\n## Installation\r\n\r\n Use package manager pip install the package \r\n\r\n ```sh\r\n\r\n pip install Topsis-Namish-102103631 \r\n\r\n ```\r\n\r\n## Usage\r\n\r\n- Command-line Input: `python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>`. \r\n\r\n- Input-File Type: Only Excel file will be accepted as input file.\r\n\r\n- The second to last columns of the data file MUST contain NUMERIC values.\r\n\r\n-  Impacts are either '+' or '-' \r\n\r\n- Weights and Impacts should be enclosed in double quotes and separated by commas.\r\n\r\n- Output: 'Topsis Score' column and a 'Rank' column to the data and saves the results to a CSV file specified in the command-line arguments.\r\n\r\n## Example\r\n\r\n\r\n\r\n**Command-Line-Input**\r\n\r\n```sh\r\n\r\n python 102103631.py 102103631-data.csv \u201c1,1,1,1,1\u201d \u201c+,+,-,+,+\u201d 102103631-result.csv\r\n\r\n```\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Topsis Package by Namish Jindal",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [
        "python",
        "topsis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d14c225c35a14c9ff20882e852b570d7ddb0f1f4ddae8fb5c415c1478b65efee",
                "md5": "d7e5739e6c6a8a2bf93d4e27b12a7dc4",
                "sha256": "faecc7df3f968bed7da3f7074015be31daa3b37967336df94125a16cb2916100"
            },
            "downloads": -1,
            "filename": "Topsis_Namish_102103631-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d7e5739e6c6a8a2bf93d4e27b12a7dc4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3323,
            "upload_time": "2024-01-28T14:42:48",
            "upload_time_iso_8601": "2024-01-28T14:42:48.280026Z",
            "url": "https://files.pythonhosted.org/packages/d1/4c/225c35a14c9ff20882e852b570d7ddb0f1f4ddae8fb5c415c1478b65efee/Topsis_Namish_102103631-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ebb3ba072e8aed34b21f922b3664baf133dcc52443db51f1c7d747d1c861f78",
                "md5": "70a323d753a259e9b82eadb4dad8b4dc",
                "sha256": "917289073a39e8ca82a4c62dbd95701916c682d3f985c4ac56d2db7beb97efb6"
            },
            "downloads": -1,
            "filename": "Topsis-Namish-102103631-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "70a323d753a259e9b82eadb4dad8b4dc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3190,
            "upload_time": "2024-01-28T14:42:50",
            "upload_time_iso_8601": "2024-01-28T14:42:50.530653Z",
            "url": "https://files.pythonhosted.org/packages/3e/bb/3ba072e8aed34b21f922b3664baf133dcc52443db51f1c7d747d1c861f78/Topsis-Namish-102103631-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-28 14:42:50",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-namish-102103631"
}
        
Elapsed time: 2.16994s