Topsis-Navjot-102217046


NameTopsis-Navjot-102217046 JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryImplementation of Topsis
upload_time2025-01-19 19:22:27
maintainerNone
docs_urlNone
authorNavjot
requires_pythonNone
licenseNone
keywords topsis topsis-navjot-102217046 navjot topsis-navjot 102217046
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS Implementation

This repository contains a Python implementation of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS is a powerful multi-criteria decision-making method that assists in ranking a set of alternatives based on their proximity to the ideal solution.

## Table of Contents

1. [Introduction](#introduction)
2. [Usage](#usage)
3. [Command-line Arguments](#command-line-arguments)
6. [Requirements](#requirements)

## Introduction

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a well-established method for decision-making. This Python implementation allows you to easily apply TOPSIS to your decision matrix and obtain a ranked list of alternatives.

### Key Concepts:

- Decision Matrix: Represents alternatives and criteria.
- Weights: Assign importance to criteria.
- Impacts: Indicate whether higher or lower values are favorable.
- Normalization: Ensures all criteria are on a similar scale.
- Ideal and Worst Solutions: Represent best and worst possible outcomes.
- Similarity and Dissimilarity Measures: Calculate proximity to ideal and dissimilarity to worst.
- TOPSIS Score: Combines similarity and dissimilarity measures.
- Ranking: Alternatives are ranked based on TOPSIS scores.

## Usage

1. Ensure you have Python installed on your system.

2. Clone this repository to your local machine:

   ```bash
   git clone https://github.com/dhruvRajoria/Topsis_Dhruv

3. Navigate to the project directory:

      ```bash
   git clone https://github.com/dhruvRajoria/Topsis_Dhruv

   
4. Run the TOPSIS script with the required command-line arguments:

   
      python 102217050.py 102217050-data.csv "1,1,1,2" "+,+,-,+" result.csv



5. The TOPSIS analysis will be performed, and the result will be saved to the specified CSV file.

## Command-line Arguments

- `<InputDataFile>`: Path to the input CSV file containing the decision matrix.

- `<Weights>`: Comma-separated weights for each criterion.

- `<Impacts>`: Comma-separated impact signs for each criterion (use '+' for beneficial criteria and '-' for non-beneficial criteria).

- `<ResultFileName>`: Desired name for the output CSV result file.



## Requirements

- Python 3.x
- pandas
- numpy











   

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Topsis-Navjot-102217046",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Topsis, Topsis-Navjot-102217046, Navjot, Topsis-Navjot, 102217046",
    "author": "Navjot",
    "author_email": "nsingh5_be22@thapar.edu",
    "download_url": "https://files.pythonhosted.org/packages/7a/22/9e232bbe72805ddacaecb1d53db9c3eb8f12c1d26de72e9df2442b0d42bf/Topsis-Navjot-102217046-1.0.3.tar.gz",
    "platform": null,
    "description": "# TOPSIS Implementation\r\n\r\nThis repository contains a Python implementation of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS is a powerful multi-criteria decision-making method that assists in ranking a set of alternatives based on their proximity to the ideal solution.\r\n\r\n## Table of Contents\r\n\r\n1. [Introduction](#introduction)\r\n2. [Usage](#usage)\r\n3. [Command-line Arguments](#command-line-arguments)\r\n6. [Requirements](#requirements)\r\n\r\n## Introduction\r\n\r\nThe Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a well-established method for decision-making. This Python implementation allows you to easily apply TOPSIS to your decision matrix and obtain a ranked list of alternatives.\r\n\r\n### Key Concepts:\r\n\r\n- Decision Matrix: Represents alternatives and criteria.\r\n- Weights: Assign importance to criteria.\r\n- Impacts: Indicate whether higher or lower values are favorable.\r\n- Normalization: Ensures all criteria are on a similar scale.\r\n- Ideal and Worst Solutions: Represent best and worst possible outcomes.\r\n- Similarity and Dissimilarity Measures: Calculate proximity to ideal and dissimilarity to worst.\r\n- TOPSIS Score: Combines similarity and dissimilarity measures.\r\n- Ranking: Alternatives are ranked based on TOPSIS scores.\r\n\r\n## Usage\r\n\r\n1. Ensure you have Python installed on your system.\r\n\r\n2. Clone this repository to your local machine:\r\n\r\n   ```bash\r\n   git clone https://github.com/dhruvRajoria/Topsis_Dhruv\r\n\r\n3. Navigate to the project directory:\r\n\r\n      ```bash\r\n   git clone https://github.com/dhruvRajoria/Topsis_Dhruv\r\n\r\n   \r\n4. Run the TOPSIS script with the required command-line arguments:\r\n\r\n   \r\n      python 102217050.py 102217050-data.csv \"1,1,1,2\" \"+,+,-,+\" result.csv\r\n\r\n\r\n\r\n5. The TOPSIS analysis will be performed, and the result will be saved to the specified CSV file.\r\n\r\n## Command-line Arguments\r\n\r\n- `<InputDataFile>`: Path to the input CSV file containing the decision matrix.\r\n\r\n- `<Weights>`: Comma-separated weights for each criterion.\r\n\r\n- `<Impacts>`: Comma-separated impact signs for each criterion (use '+' for beneficial criteria and '-' for non-beneficial criteria).\r\n\r\n- `<ResultFileName>`: Desired name for the output CSV result file.\r\n\r\n\r\n\r\n## Requirements\r\n\r\n- Python 3.x\r\n- pandas\r\n- numpy\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n   \r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Implementation of Topsis",
    "version": "1.0.3",
    "project_urls": {
        "Project Link": "https://github.com/NavjotSingh2003/Topsis_Navjot"
    },
    "split_keywords": [
        "topsis",
        " topsis-navjot-102217046",
        " navjot",
        " topsis-navjot",
        " 102217046"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ce63e62a7eea7b81833c38ae30342e3c88ce4b4f11a531bd7e67f2305dcd5c3e",
                "md5": "0882f7250ed619014b69bd5dc1260e5c",
                "sha256": "2d7e4f140013ba19540c24959d9786c5a12887e28e2b7820e4250ca177d8609b"
            },
            "downloads": -1,
            "filename": "Topsis_Navjot_102217046-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0882f7250ed619014b69bd5dc1260e5c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2335,
            "upload_time": "2025-01-19T19:22:26",
            "upload_time_iso_8601": "2025-01-19T19:22:26.216521Z",
            "url": "https://files.pythonhosted.org/packages/ce/63/e62a7eea7b81833c38ae30342e3c88ce4b4f11a531bd7e67f2305dcd5c3e/Topsis_Navjot_102217046-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7a229e232bbe72805ddacaecb1d53db9c3eb8f12c1d26de72e9df2442b0d42bf",
                "md5": "2520cda0a9148da213ee895f1a0f0418",
                "sha256": "52925437b81c7fd3c3539dd01af0670d3fbfe9313388de236dcfa2049a86f1ff"
            },
            "downloads": -1,
            "filename": "Topsis-Navjot-102217046-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "2520cda0a9148da213ee895f1a0f0418",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2553,
            "upload_time": "2025-01-19T19:22:27",
            "upload_time_iso_8601": "2025-01-19T19:22:27.854515Z",
            "url": "https://files.pythonhosted.org/packages/7a/22/9e232bbe72805ddacaecb1d53db9c3eb8f12c1d26de72e9df2442b0d42bf/Topsis-Navjot-102217046-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-19 19:22:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NavjotSingh2003",
    "github_project": "Topsis_Navjot",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-navjot-102217046"
}
        
Elapsed time: 0.44195s