Topsis-Nishtha-102103604


NameTopsis-Nishtha-102103604 JSON
Version 0.1.1 PyPI version JSON
download
home_page
SummaryTopsis Package by Nishtha Kumari
upload_time2024-01-28 14:43:18
maintainer
docs_urlNone
authorNishtha Kumari
requires_python
license
keywords python topsis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Topsis Python Package

Made by Nishtha Kumari 

## About

Topsis (Technique for Order of Preference by Similarity to Ideal Solution) is a multi-criteria decision-making method used to identify the best alternative from a set of options.

## Installation

 Use package manager pip install the package 

 ```sh

 pip install Topsis-Nishtha-102103604 

 ```

## Usage

- Command-line Input: `python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>`. 

- Input-File type: Only Excel file will be required as input file.

- The second to last columns of the data file MUST contain NUMERIC values.

-  Impacts are either '+' or '-' 

- Weights and Impacts should be enclosed in double quotes and separated by commas.

- Output: 'Topsis Score' column and a 'Rank' column to the data and saves the results to a CSV file specified in the command-line arguments.

## Example



**Command-Line-Input**

```sh

 python 102103604.py 102103604-data.csv “1,1,1,1,1” “+,+,-,+,-” 102103604-result.csv

```
























            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Nishtha-102103604",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,topsis",
    "author": "Nishtha Kumari",
    "author_email": "<nishtha5055@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/4e/6c/12439bbe5e93f680f0b71bcbc5b472115182e33e7e9a63605ad19c5c736c/Topsis-Nishtha-102103604-0.1.1.tar.gz",
    "platform": null,
    "description": "\r\n# Topsis Python Package\r\n\r\nMade by Nishtha Kumari \r\n\r\n## About\r\n\r\nTopsis (Technique for Order of Preference by Similarity to Ideal Solution) is a multi-criteria decision-making method used to identify the best alternative from a set of options.\r\n\r\n## Installation\r\n\r\n Use package manager pip install the package \r\n\r\n ```sh\r\n\r\n pip install Topsis-Nishtha-102103604 \r\n\r\n ```\r\n\r\n## Usage\r\n\r\n- Command-line Input: `python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>`. \r\n\r\n- Input-File type: Only Excel file will be required as input file.\r\n\r\n- The second to last columns of the data file MUST contain NUMERIC values.\r\n\r\n-  Impacts are either '+' or '-' \r\n\r\n- Weights and Impacts should be enclosed in double quotes and separated by commas.\r\n\r\n- Output: 'Topsis Score' column and a 'Rank' column to the data and saves the results to a CSV file specified in the command-line arguments.\r\n\r\n## Example\r\n\r\n\r\n\r\n**Command-Line-Input**\r\n\r\n```sh\r\n\r\n python 102103604.py 102103604-data.csv \u201c1,1,1,1,1\u201d \u201c+,+,-,+,-\u201d 102103604-result.csv\r\n\r\n```\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Topsis Package by Nishtha Kumari",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        "topsis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "10ebe5ee657b8e194a6a65806f26129753483004d6d7f17e5fbfc28c8cce51e0",
                "md5": "56b9ae1d1dccfca42f9247e3daa7baf0",
                "sha256": "c4ef7086f9a8b63f583878433e1ec820c5216e29f3df0e84cea3e38bb66504a9"
            },
            "downloads": -1,
            "filename": "Topsis_Nishtha_102103604-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "56b9ae1d1dccfca42f9247e3daa7baf0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3333,
            "upload_time": "2024-01-28T14:43:16",
            "upload_time_iso_8601": "2024-01-28T14:43:16.597417Z",
            "url": "https://files.pythonhosted.org/packages/10/eb/e5ee657b8e194a6a65806f26129753483004d6d7f17e5fbfc28c8cce51e0/Topsis_Nishtha_102103604-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4e6c12439bbe5e93f680f0b71bcbc5b472115182e33e7e9a63605ad19c5c736c",
                "md5": "38d4a072f78d42cb58839dec5e55ffb1",
                "sha256": "a06b2e9b928465ab5ec1353a76a6508eb26b187b9498aa0814e91a1c152d7b13"
            },
            "downloads": -1,
            "filename": "Topsis-Nishtha-102103604-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "38d4a072f78d42cb58839dec5e55ffb1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3185,
            "upload_time": "2024-01-28T14:43:18",
            "upload_time_iso_8601": "2024-01-28T14:43:18.578352Z",
            "url": "https://files.pythonhosted.org/packages/4e/6c/12439bbe5e93f680f0b71bcbc5b472115182e33e7e9a63605ad19c5c736c/Topsis-Nishtha-102103604-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-28 14:43:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-nishtha-102103604"
}
        
Elapsed time: 2.94121s