Name | Topsis-Pranav-102003432 JSON |
Version |
0.13
JSON |
| download |
home_page | |
Summary | This is a topsis package of version 0.13 |
upload_time | 2023-01-22 21:42:32 |
maintainer | |
docs_url | None |
author | Pranav Singh |
requires_python | |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
## Topsis_Pranav_102003432
# TOPSIS
Submitted By: **Pranav Singh - 102003432**.
Type: **Package**.
Title: **TOPSIS method for multiple-criteria decision making (MCDM)**.
Version: **1.0.0**.
Date: **2022-01-22**.
Author: **Pranav Singh**.
Maintainer: **Pranav Singh <psingh2_be20@thapar.edu>**.
Description: **Evaluation of alternatives based on multiple criteria using TOPSIS method.**.
---
## What is TOPSIS?
**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution
(TOPSIS) originated in the 1980s as a multi-criteria decision making method.
TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,
and greatest distance from the negative-ideal solution.
<br>
## How to install this package:
```
>> pip install Topsis-Pranav-102003432
```
### In Command Prompt
```
>> topsis data.csv "1,1,1,1,1" "+,+,-,+,-" result.csv
```
## Input file (data.csv)
The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.
| Model | P1 | P2 | P3 | P4 | P5 |
| ----- | ----------- | ------------- | ---- | -------- | ---- |
| M1 | 0.7 | 0.5 | 7 | 37 | 11.3 |
| M2 | 0.8 | 0.6 | 7 | 46 | 13.4 |
| M3 | 0.7 | 0.5 | 7 | 48 | 14 |
| M4 | 0.9 | 0.8 | 7 | 44 | 13.2 |
| M5 | 0.9 | 0.9 | 5 | 37 | 11.1 |
| M6 | 0.9 | 0.6 | 3 | 67 | 18 |
| M7 | 0.9 | 0.5 | 7 | 39 | 11.8 |
| M8 | 0.9 | 0.9 | 5 | 46 | 13.2 |
Weights (`weights`) is not already normalised will be normalised later in the code.
Information of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.
<br>
## Output file (result.csv)
| Model | P1 | P2 | P3 | P4 | P5 | Topsis Score | Rank |
| ----- | ----------- | ------------- | ---- | -------- | ---- |-----| ----|
| M1 | 0.7 | 0.5 | 7 | 37 | 11.3 | 0.28016 | 5 |
| M2 | 0.8 | 0.6 | 7 | 46 | 13.4 | 0.8292 | 1 |
| M3 | 0.7 | 0.5 | 7 | 48 | 14 | 0.17536 | 8 |
| M4 | 0.9 | 0.8 | 7 | 44 | 13.2 | 0.25 | 7 |
| M5 | 0.9 | 0.9 | 5 | 37 | 11.1 | 0.56483 | 3 |
| M6 | 0.9 | 0.6 | 3 | 67 | 18 | 0.27313 | 6 |
| M7 | 0.9 | 0.5 | 7 | 39 | 11.8 | 0.55075 | 4 |
| M8 | 0.9 | 0.9 | 5 | 46 | 13.2 | 0.65029 | 2 |
<br>
The output file contains columns of input file along with two additional columns having **Topsis_score** and **Rank**
Raw data
{
"_id": null,
"home_page": "",
"name": "Topsis-Pranav-102003432",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Pranav Singh",
"author_email": "psingh2_be20@thapar.edu",
"download_url": "https://files.pythonhosted.org/packages/55/24/989789513b5ff3c1a695dcf43bddd9f61d33138d24cd218e97873a7ef85d/Topsis_Pranav_102003432-0.13.tar.gz",
"platform": null,
"description": "## Topsis_Pranav_102003432\r\n\r\n# TOPSIS\r\n\r\nSubmitted By: **Pranav Singh - 102003432**.\r\n\r\nType: **Package**.\r\n\r\nTitle: **TOPSIS method for multiple-criteria decision making (MCDM)**.\r\n\r\nVersion: **1.0.0**.\r\n\r\nDate: **2022-01-22**.\r\n\r\nAuthor: **Pranav Singh**.\r\n\r\nMaintainer: **Pranav Singh <psingh2_be20@thapar.edu>**.\r\n\r\nDescription: **Evaluation of alternatives based on multiple criteria using TOPSIS method.**.\r\n\r\n---\r\n\r\n## What is TOPSIS?\r\n\r\n**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution\r\n(TOPSIS) originated in the 1980s as a multi-criteria decision making method.\r\nTOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution,\r\nand greatest distance from the negative-ideal solution.\r\n\r\n<br>\r\n\r\n## How to install this package:\r\n\r\n```\r\n>> pip install Topsis-Pranav-102003432\r\n```\r\n\r\n### In Command Prompt\r\n\r\n```\r\n>> topsis data.csv \"1,1,1,1,1\" \"+,+,-,+,-\" result.csv\r\n```\r\n\r\n## Input file (data.csv)\r\n\r\nThe decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R<sup>2</sup>, Root Mean Squared Error, Correlation, and many more.\r\n\r\n| Model | P1 | P2 | P3 | P4 | P5 |\r\n| ----- | ----------- | ------------- | ---- | -------- | ---- |\r\n| M1 | 0.7 | 0.5 | 7 | 37 | 11.3 |\r\n| M2 | 0.8 | 0.6 | 7 | 46 | 13.4 |\r\n| M3 | 0.7 | 0.5 | 7 | 48 | 14 |\r\n| M4 | 0.9 | 0.8 | 7 | 44 | 13.2 |\r\n| M5 | 0.9 | 0.9 | 5 | 37 | 11.1 |\r\n| M6 | 0.9 | 0.6 | 3 | 67 | 18 |\r\n| M7 | 0.9 | 0.5 | 7 | 39 | 11.8 |\r\n| M8 | 0.9 | 0.9 | 5 | 46 | 13.2 |\r\n\r\nWeights (`weights`) is not already normalised will be normalised later in the code.\r\n\r\nInformation of benefit positive(+) or negative(-) impact criteria should be provided in `impacts`.\r\n\r\n<br>\r\n\r\n## Output file (result.csv)\r\n\r\n| Model | P1 | P2 | P3 | P4 | P5 | Topsis Score | Rank |\r\n| ----- | ----------- | ------------- | ---- | -------- | ---- |-----| ----|\r\n| M1 | 0.7 | 0.5 | 7 | 37 | 11.3 | 0.28016 | 5 |\r\n| M2 | 0.8 | 0.6 | 7 | 46 | 13.4 | 0.8292 | 1 |\r\n| M3 | 0.7 | 0.5 | 7 | 48 | 14 | 0.17536 | 8 |\r\n| M4 | 0.9 | 0.8 | 7 | 44 | 13.2 | 0.25 | 7 |\r\n| M5 | 0.9 | 0.9 | 5 | 37 | 11.1 | 0.56483 | 3 |\r\n| M6 | 0.9 | 0.6 | 3 | 67 | 18 | 0.27313 | 6 |\r\n| M7 | 0.9 | 0.5 | 7 | 39 | 11.8 | 0.55075 | 4 |\r\n| M8 | 0.9 | 0.9 | 5 | 46 | 13.2 | 0.65029 | 2 |\r\n\r\n<br>\r\nThe output file contains columns of input file along with two additional columns having **Topsis_score** and **Rank**\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "",
"summary": "This is a topsis package of version 0.13",
"version": "0.13",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5199663e15f6578ffe0d117c5cd3b5b6d406d7f2dacd3e9fd6d09e3cf36b1bf4",
"md5": "4089d29437593397f8172c5e3c911e12",
"sha256": "22bc8d13bcfd22b323fb718985a2d456c273ad855d21e03b5853461145973d23"
},
"downloads": -1,
"filename": "Topsis_Pranav_102003432-0.13-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4089d29437593397f8172c5e3c911e12",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4099,
"upload_time": "2023-01-22T21:42:30",
"upload_time_iso_8601": "2023-01-22T21:42:30.071609Z",
"url": "https://files.pythonhosted.org/packages/51/99/663e15f6578ffe0d117c5cd3b5b6d406d7f2dacd3e9fd6d09e3cf36b1bf4/Topsis_Pranav_102003432-0.13-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5524989789513b5ff3c1a695dcf43bddd9f61d33138d24cd218e97873a7ef85d",
"md5": "77b8e090f426d0d9442d19d6aa0bc489",
"sha256": "f2c9d710948813688e5b2d51cd4093a3bb5dc8d15ead2224ef7eebf3aab7b482"
},
"downloads": -1,
"filename": "Topsis_Pranav_102003432-0.13.tar.gz",
"has_sig": false,
"md5_digest": "77b8e090f426d0d9442d19d6aa0bc489",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3698,
"upload_time": "2023-01-22T21:42:32",
"upload_time_iso_8601": "2023-01-22T21:42:32.437904Z",
"url": "https://files.pythonhosted.org/packages/55/24/989789513b5ff3c1a695dcf43bddd9f61d33138d24cd218e97873a7ef85d/Topsis_Pranav_102003432-0.13.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-22 21:42:32",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "topsis-pranav-102003432"
}