TOPSIS-Prerit-102217030


NameTOPSIS-Prerit-102217030 JSON
Version 1.0.2 PyPI version JSON
download
home_pageNone
SummaryA Python package for performing TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis.
upload_time2025-01-19 04:32:03
maintainerNone
docs_urlNone
authorPrerit Bhagat
requires_python>=3.7
licenseMIT
keywords topsis mcdm multi-criteria decision-making ranking analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS Implementation

This package provides a Python implementation of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for multi-criteria decision analysis.

---

## Features
- **Ease of Use**: Simple and clear implementation of the TOPSIS algorithm.
- **Weighted Decision Making**: Allows users to define weights for each criterion.
- **Impact Analysis**: Accounts for both positive and negative impacts of criteria.
- **Command-Line Interface**: Execute TOPSIS directly from the terminal with input and output files.

---

## Installation

To install the package, use:

pip install TOPSIS_Prerit_102217030


## Usage
Run the TOPSIS analysis using the command-line interface:

topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>

Example
Suppose you have a CSV file data.csv containing a decision matrix where:

The first column is the identifier for alternatives.
The subsequent columns contain numeric data for each criterion.

If you want to apply TOPSIS with weights [1, 1, 1, 2] and impacts [+, +, -, +], use:
python topsis data.csv "1,1,1,2" "+,+,-,+" result.csv

This will generate a result file result.csv with the calculated TOPSIS scores and rankings.
<!-- ## Functions -->
<!-- ### Funtion(parameter) -->


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "TOPSIS-Prerit-102217030",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "topsis mcdm multi-criteria decision-making ranking analysis",
    "author": "Prerit Bhagat",
    "author_email": "preritbhagat.pb@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/47/74/5d6c6bb87a35019fdf2ea539fd85504b621a3beff6ce172d589a5d4c27c5/topsis_prerit_102217030-1.0.2.tar.gz",
    "platform": null,
    "description": "# TOPSIS Implementation\r\n\r\nThis package provides a Python implementation of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for multi-criteria decision analysis.\r\n\r\n---\r\n\r\n## Features\r\n- **Ease of Use**: Simple and clear implementation of the TOPSIS algorithm.\r\n- **Weighted Decision Making**: Allows users to define weights for each criterion.\r\n- **Impact Analysis**: Accounts for both positive and negative impacts of criteria.\r\n- **Command-Line Interface**: Execute TOPSIS directly from the terminal with input and output files.\r\n\r\n---\r\n\r\n## Installation\r\n\r\nTo install the package, use:\r\n\r\npip install TOPSIS_Prerit_102217030\r\n\r\n\r\n## Usage\r\nRun the TOPSIS analysis using the command-line interface:\r\n\r\ntopsis <InputDataFile> <Weights> <Impacts> <ResultFileName>\r\n\r\nExample\r\nSuppose you have a CSV file data.csv containing a decision matrix where:\r\n\r\nThe first column is the identifier for alternatives.\r\nThe subsequent columns contain numeric data for each criterion.\r\n\r\nIf you want to apply TOPSIS with weights [1, 1, 1, 2] and impacts [+, +, -, +], use:\r\npython topsis data.csv \"1,1,1,2\" \"+,+,-,+\" result.csv\r\n\r\nThis will generate a result file result.csv with the calculated TOPSIS scores and rankings.\r\n<!-- ## Functions -->\r\n<!-- ### Funtion(parameter) -->\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package for performing TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis.",
    "version": "1.0.2",
    "project_urls": {
        "Documentation": "https://github.com/Prerit-Bhagat/PYPI_Package#readme",
        "Source": "https://github.com/Prerit-Bhagat/PYPI_Package"
    },
    "split_keywords": [
        "topsis",
        "mcdm",
        "multi-criteria",
        "decision-making",
        "ranking",
        "analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "13ddbe25f279a593394581ee4ea0c9b8fb4d9c0086a36cc65e455ba08d9f69c5",
                "md5": "7827e3aca54bbc773c043eab5b549f79",
                "sha256": "845cd235d3caf919c705fdf5ff62524e64140fe57395917cc9d030150fd67bfc"
            },
            "downloads": -1,
            "filename": "TOPSIS_Prerit_102217030-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7827e3aca54bbc773c043eab5b549f79",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5670,
            "upload_time": "2025-01-19T04:32:00",
            "upload_time_iso_8601": "2025-01-19T04:32:00.987502Z",
            "url": "https://files.pythonhosted.org/packages/13/dd/be25f279a593394581ee4ea0c9b8fb4d9c0086a36cc65e455ba08d9f69c5/TOPSIS_Prerit_102217030-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47745d6c6bb87a35019fdf2ea539fd85504b621a3beff6ce172d589a5d4c27c5",
                "md5": "d6da21e870122538e9e37cdfbe5547a5",
                "sha256": "20942d47d906ba487ec095981d572e94d971e2300cfd5d77fca43355f0f7917d"
            },
            "downloads": -1,
            "filename": "topsis_prerit_102217030-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d6da21e870122538e9e37cdfbe5547a5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 5164,
            "upload_time": "2025-01-19T04:32:03",
            "upload_time_iso_8601": "2025-01-19T04:32:03.081813Z",
            "url": "https://files.pythonhosted.org/packages/47/74/5d6c6bb87a35019fdf2ea539fd85504b621a3beff6ce172d589a5d4c27c5/topsis_prerit_102217030-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-19 04:32:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Prerit-Bhagat",
    "github_project": "PYPI_Package#readme",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "topsis-prerit-102217030"
}
        
Elapsed time: 0.78158s