# TOPSIS Implementation
This package provides a Python implementation of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for multi-criteria decision analysis.
---
## Features
- **Ease of Use**: Simple and clear implementation of the TOPSIS algorithm.
- **Weighted Decision Making**: Allows users to define weights for each criterion.
- **Impact Analysis**: Accounts for both positive and negative impacts of criteria.
- **Command-Line Interface**: Execute TOPSIS directly from the terminal with input and output files.
---
## Installation
To install the package, use:
pip install TOPSIS_Prerit_102217030
## Usage
Run the TOPSIS analysis using the command-line interface:
topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>
Example
Suppose you have a CSV file data.csv containing a decision matrix where:
The first column is the identifier for alternatives.
The subsequent columns contain numeric data for each criterion.
If you want to apply TOPSIS with weights [1, 1, 1, 2] and impacts [+, +, -, +], use:
python topsis data.csv "1,1,1,2" "+,+,-,+" result.csv
This will generate a result file result.csv with the calculated TOPSIS scores and rankings.
<!-- ## Functions -->
<!-- ### Funtion(parameter) -->
Raw data
{
"_id": null,
"home_page": null,
"name": "TOPSIS-Prerit-102217030",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "topsis mcdm multi-criteria decision-making ranking analysis",
"author": "Prerit Bhagat",
"author_email": "preritbhagat.pb@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/47/74/5d6c6bb87a35019fdf2ea539fd85504b621a3beff6ce172d589a5d4c27c5/topsis_prerit_102217030-1.0.2.tar.gz",
"platform": null,
"description": "# TOPSIS Implementation\r\n\r\nThis package provides a Python implementation of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for multi-criteria decision analysis.\r\n\r\n---\r\n\r\n## Features\r\n- **Ease of Use**: Simple and clear implementation of the TOPSIS algorithm.\r\n- **Weighted Decision Making**: Allows users to define weights for each criterion.\r\n- **Impact Analysis**: Accounts for both positive and negative impacts of criteria.\r\n- **Command-Line Interface**: Execute TOPSIS directly from the terminal with input and output files.\r\n\r\n---\r\n\r\n## Installation\r\n\r\nTo install the package, use:\r\n\r\npip install TOPSIS_Prerit_102217030\r\n\r\n\r\n## Usage\r\nRun the TOPSIS analysis using the command-line interface:\r\n\r\ntopsis <InputDataFile> <Weights> <Impacts> <ResultFileName>\r\n\r\nExample\r\nSuppose you have a CSV file data.csv containing a decision matrix where:\r\n\r\nThe first column is the identifier for alternatives.\r\nThe subsequent columns contain numeric data for each criterion.\r\n\r\nIf you want to apply TOPSIS with weights [1, 1, 1, 2] and impacts [+, +, -, +], use:\r\npython topsis data.csv \"1,1,1,2\" \"+,+,-,+\" result.csv\r\n\r\nThis will generate a result file result.csv with the calculated TOPSIS scores and rankings.\r\n<!-- ## Functions -->\r\n<!-- ### Funtion(parameter) -->\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package for performing TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis.",
"version": "1.0.2",
"project_urls": {
"Documentation": "https://github.com/Prerit-Bhagat/PYPI_Package#readme",
"Source": "https://github.com/Prerit-Bhagat/PYPI_Package"
},
"split_keywords": [
"topsis",
"mcdm",
"multi-criteria",
"decision-making",
"ranking",
"analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "13ddbe25f279a593394581ee4ea0c9b8fb4d9c0086a36cc65e455ba08d9f69c5",
"md5": "7827e3aca54bbc773c043eab5b549f79",
"sha256": "845cd235d3caf919c705fdf5ff62524e64140fe57395917cc9d030150fd67bfc"
},
"downloads": -1,
"filename": "TOPSIS_Prerit_102217030-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7827e3aca54bbc773c043eab5b549f79",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 5670,
"upload_time": "2025-01-19T04:32:00",
"upload_time_iso_8601": "2025-01-19T04:32:00.987502Z",
"url": "https://files.pythonhosted.org/packages/13/dd/be25f279a593394581ee4ea0c9b8fb4d9c0086a36cc65e455ba08d9f69c5/TOPSIS_Prerit_102217030-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "47745d6c6bb87a35019fdf2ea539fd85504b621a3beff6ce172d589a5d4c27c5",
"md5": "d6da21e870122538e9e37cdfbe5547a5",
"sha256": "20942d47d906ba487ec095981d572e94d971e2300cfd5d77fca43355f0f7917d"
},
"downloads": -1,
"filename": "topsis_prerit_102217030-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "d6da21e870122538e9e37cdfbe5547a5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 5164,
"upload_time": "2025-01-19T04:32:03",
"upload_time_iso_8601": "2025-01-19T04:32:03.081813Z",
"url": "https://files.pythonhosted.org/packages/47/74/5d6c6bb87a35019fdf2ea539fd85504b621a3beff6ce172d589a5d4c27c5/topsis_prerit_102217030-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-19 04:32:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Prerit-Bhagat",
"github_project": "PYPI_Package#readme",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "topsis-prerit-102217030"
}