Topsis-Prisha-102116052


NameTopsis-Prisha-102116052 JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryTOPSIS Application
upload_time2024-01-29 00:27:44
maintainer
docs_urlNone
authorPrisha Sawhney
requires_python
license
keywords python topsis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Topsis-Prisha-102116052



_for: **Project-1 (UCS654)**_

_submitted by: **Prisha Sawhney**_

_Roll no: **102116052**_

_Group: **3CS10**_





Topsis-Prisha-102116052 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).



## Installation



Use the package manager [pip](https://pip.pypa.io/en/stable/) to install Topsis-Prisha-102116052.



```bash

pip install Topsis-Prisha-102116052

```



## Usage



Enter csv filename followed by _.csv_ extentsion, then enter the _weights_ vector with vector values separated by commas, followed by the _impacts_ vector with comma separated signs _(+,-)_

```bash

topsis sample.csv "1,1,1,1" "+,-,+,+"

```

or vectors can be entered without " "

```bash

topsis sample.csv 1,1,1,1 +,-,+,+

```

But the second representation does not provide for inadvertent spaces between vector values. So, if the input string contains spaces, make sure to enclose it between double quotes _(" ")_.



To view usage __help__, use

```

topsis /h

```

## Example



#### sample.csv



A csv file showing data for different mobile handsets having varying features.



| Model  | Storage space(in gb) | Camera(in MP)| Price(in $)  | Looks(out of 5) |

| :----: |:--------------------:|:------------:|:------------:|:---------------:|

| M1 | 16 | 12 | 250 | 5 |

| M2 | 16 | 8  | 200 | 3 |

| M3 | 32 | 16 | 300 | 4 |

| M4 | 32 | 8  | 275 | 4 |

| M5 | 16 | 16 | 225 | 2 |



weights vector = [ 0.25 , 0.25 , 0.25 , 0.25 ]



impacts vector = [ + , + , - , + ]



### input:



```python

topsis sample.csv "0.25,0.25,0.25,0.25" "+,+,-,+"

```



### output:

```

      TOPSIS RESULTS

-----------------------------



    P-Score  Rank

1  0.534277     3

2  0.308368     5

3  0.691632     1

4  0.534737     2

5  0.401046     4



``` 




            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Prisha-102116052",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,topsis",
    "author": "Prisha Sawhney",
    "author_email": "psawhney_be21@thapar.edu",
    "download_url": "https://files.pythonhosted.org/packages/02/a7/236053a48f6df218214f53335c5d2852b3bdfb88e0807dfa7375ab6f6a13/Topsis-Prisha-102116052-0.0.1.tar.gz",
    "platform": null,
    "description": "\r\n# Topsis-Prisha-102116052\r\n\r\n\r\n\r\n_for: **Project-1 (UCS654)**_\r\n\r\n_submitted by: **Prisha Sawhney**_\r\n\r\n_Roll no: **102116052**_\r\n\r\n_Group: **3CS10**_\r\n\r\n\r\n\r\n\r\n\r\nTopsis-Prisha-102116052 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).\r\n\r\n\r\n\r\n## Installation\r\n\r\n\r\n\r\nUse the package manager [pip](https://pip.pypa.io/en/stable/) to install Topsis-Prisha-102116052.\r\n\r\n\r\n\r\n```bash\r\n\r\npip install Topsis-Prisha-102116052\r\n\r\n```\r\n\r\n\r\n\r\n## Usage\r\n\r\n\r\n\r\nEnter csv filename followed by _.csv_ extentsion, then enter the _weights_ vector with vector values separated by commas, followed by the _impacts_ vector with comma separated signs _(+,-)_\r\n\r\n```bash\r\n\r\ntopsis sample.csv \"1,1,1,1\" \"+,-,+,+\"\r\n\r\n```\r\n\r\nor vectors can be entered without \" \"\r\n\r\n```bash\r\n\r\ntopsis sample.csv 1,1,1,1 +,-,+,+\r\n\r\n```\r\n\r\nBut the second representation does not provide for inadvertent spaces between vector values. So, if the input string contains spaces, make sure to enclose it between double quotes _(\" \")_.\r\n\r\n\r\n\r\nTo view usage __help__, use\r\n\r\n```\r\n\r\ntopsis /h\r\n\r\n```\r\n\r\n## Example\r\n\r\n\r\n\r\n#### sample.csv\r\n\r\n\r\n\r\nA csv file showing data for different mobile handsets having varying features.\r\n\r\n\r\n\r\n| Model  | Storage space(in gb) | Camera(in MP)| Price(in $)  | Looks(out of 5) |\r\n\r\n| :----: |:--------------------:|:------------:|:------------:|:---------------:|\r\n\r\n| M1 | 16 | 12 | 250 | 5 |\r\n\r\n| M2 | 16 | 8  | 200 | 3 |\r\n\r\n| M3 | 32 | 16 | 300 | 4 |\r\n\r\n| M4 | 32 | 8  | 275 | 4 |\r\n\r\n| M5 | 16 | 16 | 225 | 2 |\r\n\r\n\r\n\r\nweights vector = [ 0.25 , 0.25 , 0.25 , 0.25 ]\r\n\r\n\r\n\r\nimpacts vector = [ + , + , - , + ]\r\n\r\n\r\n\r\n### input:\r\n\r\n\r\n\r\n```python\r\n\r\ntopsis sample.csv \"0.25,0.25,0.25,0.25\" \"+,+,-,+\"\r\n\r\n```\r\n\r\n\r\n\r\n### output:\r\n\r\n```\r\n\r\n      TOPSIS RESULTS\r\n\r\n-----------------------------\r\n\r\n\r\n\r\n    P-Score  Rank\r\n\r\n1  0.534277     3\r\n\r\n2  0.308368     5\r\n\r\n3  0.691632     1\r\n\r\n4  0.534737     2\r\n\r\n5  0.401046     4\r\n\r\n\r\n\r\n``` \r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "TOPSIS Application",
    "version": "0.0.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        "topsis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "20808937ba9b210462f85b066e518fc8f40d87e3308ac0a2f2d3c6dacc3e38eb",
                "md5": "f6a35e501cc758fa8b4ef6759e6f0a86",
                "sha256": "a0f5ca512ab224ad66fc601c3a7cd2cc622cee319037f435f2b426c73259ece0"
            },
            "downloads": -1,
            "filename": "Topsis_Prisha_102116052-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f6a35e501cc758fa8b4ef6759e6f0a86",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4407,
            "upload_time": "2024-01-29T00:27:39",
            "upload_time_iso_8601": "2024-01-29T00:27:39.079148Z",
            "url": "https://files.pythonhosted.org/packages/20/80/8937ba9b210462f85b066e518fc8f40d87e3308ac0a2f2d3c6dacc3e38eb/Topsis_Prisha_102116052-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "02a7236053a48f6df218214f53335c5d2852b3bdfb88e0807dfa7375ab6f6a13",
                "md5": "1de32c259a276e42005448d8086d7785",
                "sha256": "0ee002611fea004c6c4439dbdbf75458b722bacefffeebb841e9ff2f17fb8158"
            },
            "downloads": -1,
            "filename": "Topsis-Prisha-102116052-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "1de32c259a276e42005448d8086d7785",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4273,
            "upload_time": "2024-01-29T00:27:44",
            "upload_time_iso_8601": "2024-01-29T00:27:44.834619Z",
            "url": "https://files.pythonhosted.org/packages/02/a7/236053a48f6df218214f53335c5d2852b3bdfb88e0807dfa7375ab6f6a13/Topsis-Prisha-102116052-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-29 00:27:44",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-prisha-102116052"
}
        
Elapsed time: 3.67626s