Topsis-Raghav-102103283


NameTopsis-Raghav-102103283 JSON
Version 0.7 PyPI version JSON
download
home_page
SummaryTopsis package python
upload_time2024-01-23 09:59:08
maintainer
docs_urlNone
authorRaghav Garg
requires_python
licenseMIT
keywords python topsis 102103283
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Topsis
TOPSIS( Technique for order for preference by similarity to Ideal solution ) for MCDM (Multiple criteria decision making) in Python compiled by Raghav Garg, 102103283, TIET, Patiala. 

## Installation
Use the package manager pip to install.

pip install Topsis-Raghav-102103283

## Usage
Enter csv filename followed by .csv extentsion, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-) and enter the output file name followed by .csv extension.

python [InputDataFile as .csv] [Weights as a string] [Impacts as a string] [ResultFileName as .csv]

### Example
python sample.csv "2,2,1,1" "-,-,+,+" result.csv

## Please Note That
The first column and first row are removed by the library before processing, in attempt to remove indices and headers. So the csv MUST follow the format as shown in sample.csv shown in the Example section.
The input data file MUST contain three or more columns.
The second to last columns of the data file MUST contain NUMERIC values.
The number of weights, impacts and columns (second to last) MUST be SAME.
Impacts MUST either be '+' or '-'.
Impacts and Weights MUST be separated by , (comma).

## License

© 2024 Raghav Garg

This repository is licensed under MIT License. See LICENSE for details.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Raghav-102103283",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Python,Topsis,102103283",
    "author": "Raghav Garg",
    "author_email": "rgarg5_be21@thapar.edu",
    "download_url": "https://files.pythonhosted.org/packages/0e/31/e994ce49a6b6ab48027670d044e458c47f0b41b3c58c3f2b7993e51f4482/Topsis_Raghav_102103283-0.7.tar.gz",
    "platform": null,
    "description": "# Topsis\r\nTOPSIS( Technique for order for preference by similarity to Ideal solution ) for MCDM (Multiple criteria decision making) in Python compiled by Raghav Garg, 102103283, TIET, Patiala. \r\n\r\n## Installation\r\nUse the package manager pip to install.\r\n\r\npip install Topsis-Raghav-102103283\r\n\r\n## Usage\r\nEnter csv filename followed by .csv extentsion, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-) and enter the output file name followed by .csv extension.\r\n\r\npython [InputDataFile as .csv] [Weights as a string] [Impacts as a string] [ResultFileName as .csv]\r\n\r\n### Example\r\npython sample.csv \"2,2,1,1\" \"-,-,+,+\" result.csv\r\n\r\n## Please Note That\r\nThe first column and first row are removed by the library before processing, in attempt to remove indices and headers. So the csv MUST follow the format as shown in sample.csv shown in the Example section.\r\nThe input data file MUST contain three or more columns.\r\nThe second to last columns of the data file MUST contain NUMERIC values.\r\nThe number of weights, impacts and columns (second to last) MUST be SAME.\r\nImpacts MUST either be '+' or '-'.\r\nImpacts and Weights MUST be separated by , (comma).\r\n\r\n## License\r\n\r\n\u00c2\u00a9 2024 Raghav Garg\r\n\r\nThis repository is licensed under MIT License. See LICENSE\u00c2\u00a0for\u00c2\u00a0details.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Topsis package python",
    "version": "0.7",
    "project_urls": null,
    "split_keywords": [
        "python",
        "topsis",
        "102103283"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f01695879a272ac8aaf31d71c99aee38ab55c8a2ea810a4504ef847db2324931",
                "md5": "2d9a872164e9ab2e67e8f9052bed0599",
                "sha256": "f402f8a84fe4e75868cded60edf0287b4e718924581a569089687420ad19482f"
            },
            "downloads": -1,
            "filename": "Topsis_Raghav_102103283-0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2d9a872164e9ab2e67e8f9052bed0599",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3711,
            "upload_time": "2024-01-23T09:59:06",
            "upload_time_iso_8601": "2024-01-23T09:59:06.962769Z",
            "url": "https://files.pythonhosted.org/packages/f0/16/95879a272ac8aaf31d71c99aee38ab55c8a2ea810a4504ef847db2324931/Topsis_Raghav_102103283-0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0e31e994ce49a6b6ab48027670d044e458c47f0b41b3c58c3f2b7993e51f4482",
                "md5": "3a308a4537db3214af04e3e58394c1f9",
                "sha256": "525f7cacd3282535e3b118f4f9d198bab1e3ee17986d558a8ec61a1a6edca58e"
            },
            "downloads": -1,
            "filename": "Topsis_Raghav_102103283-0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "3a308a4537db3214af04e3e58394c1f9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3235,
            "upload_time": "2024-01-23T09:59:08",
            "upload_time_iso_8601": "2024-01-23T09:59:08.480351Z",
            "url": "https://files.pythonhosted.org/packages/0e/31/e994ce49a6b6ab48027670d044e458c47f0b41b3c58c3f2b7993e51f4482/Topsis_Raghav_102103283-0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-23 09:59:08",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-raghav-102103283"
}
        
Elapsed time: 0.23472s