Topsis-Ramjas-102117159


NameTopsis-Ramjas-102117159 JSON
Version 1.0 PyPI version JSON
download
home_page
SummaryTopsis package
upload_time2024-01-28 21:30:44
maintainer
docs_urlNone
authorRAMJAS
requires_python
license
keywords python topsis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# TOPSIS PACKAGE - Assignment 1

I have developed a command line python program to implement the TOPSIS.

TOPSIS (technique for order performance by similarity to ideal solution) is a useful technique in dealing with multi-attribute or multi-criteria decision making (MADM/MCDM) problems in the real world

## Installation

```pip install topsis-Ramjas-102117159```



## Usage

Please provide the filename for the CSV, including the .csv extension. After that, enter the weights vector with values separated by commas. Following the weights vector, input the impacts vector, where each element is denoted by a plus (+) or minus (-) sign. Lastly, specify the output file name along with the .csv extension.



```py -m topsis.__main__ [input_file_name.csv] [weight as string] [impact as string] [result_file_name.csv]```



## Example Usage

The below example is for the data have 5 columns.

```py -m topsis.__main__ "C:\User\...." "1,1,2,0.5,0.75" "+,+,-,-,-" "C:\User\....."```



## Example Dataset



Fund Name | P1 | P2 | P3 | P4 | P5

------------ | ------------- | ------------ | ------------- | ------------ | ------------

M1 | 0.78 | 0.61 | 5.5 | 34.7 | 10.4

M2 | 0.88 | 0.77 | 5 | 58.4 | 16.26

M3 | 0.61 | 0.37 | 5.9 | 39.9 | 11.7

M4 | 0.76 | 0.58 | 4.2 | 57.7 | 15.81

M5 | 0.84 | 0.71 | 3.2 | 48 | 13.19

M6 | 0.76 | 0.58 | 4 | 68.8 | 18.54

M7 | 0.81 | 0.66 | 6.5 | 38.2 | 11.54

M8 | 0.81 | 0.66 | 3.2 | 32.8 | 9.37



## Output Dataset

Fund Name | P1 | P2 | P3 | P4 | P5 | TOPSIS Score | Rank

------------ | ------------- | ------------ | ------------- | ------------ | ------------ | ------------ | ------------

M1 | 0.78 | 0.61 | 5.5 | 34.7 | 10.4 | 0.5303740545041122 | 4

M2 | 0.88 | 0.77 | 5 | 58.4 | 16.26 | 0.5372510220778413 | 3

M3 | 0.61 | 0.37 | 5.9 | 39.9 | 11.7 | 0.4715707210914604 | 8

M4 | 0.76 | 0.58 | 4.2 | 57.7 | 15.81 | 0.5099483054760279 | 6

M5 | 0.84 | 0.71 | 3.2 | 48 | 13.19 | 0.57723478293325 | 1

M6 | 0.76 | 0.58 | 4 | 68.8 | 18.54 | 0.49447887833737925 | 7

M7 | 0.81 | 0.66 | 6.5 | 38.2 | 11.54 | 0.5244107252631429 | 5

M8 | 0.81 | 0.66 | 3.2 | 32.8 | 9.37 | 0.5576533672285703 | 2 



<br>



## Important Points

1) There should be only numeric columns except the first column i.e. Fund Name.

2) Input file must contain atleast three columns.



<br>




            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "Topsis-Ramjas-102117159",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,topsis",
    "author": "RAMJAS",
    "author_email": "<rlangdi_be21@thapar.edu>",
    "download_url": "https://files.pythonhosted.org/packages/5e/19/2c439ab576fee02803ac53ead9a68970c1c0c1767a4560bab444384e9414/Topsis-Ramjas-102117159-1.0.tar.gz",
    "platform": null,
    "description": "\r\n# TOPSIS PACKAGE - Assignment 1\r\r\nI have developed a command line python program to implement the TOPSIS.\r\r\nTOPSIS (technique for order performance by similarity to ideal solution) is a useful technique in dealing with multi-attribute or multi-criteria decision making (MADM/MCDM) problems in the real world\r\r\n## Installation\r\r\n```pip install topsis-Ramjas-102117159```\r\r\n\r\r\n## Usage\r\r\nPlease provide the filename for the CSV, including the .csv extension. After that, enter the weights vector with values separated by commas. Following the weights vector, input the impacts vector, where each element is denoted by a plus (+) or minus (-) sign. Lastly, specify the output file name along with the .csv extension.\r\r\n\r\r\n```py -m topsis.__main__ [input_file_name.csv] [weight as string] [impact as string] [result_file_name.csv]```\r\r\n\r\r\n## Example Usage\r\r\nThe below example is for the data have 5 columns.\r\r\n```py -m topsis.__main__ \"C:\\User\\....\" \"1,1,2,0.5,0.75\" \"+,+,-,-,-\" \"C:\\User\\.....\"```\r\r\n\r\r\n## Example Dataset\r\r\n\r\r\nFund Name | P1 | P2 | P3 | P4 | P5\r\r\n------------ | ------------- | ------------ | ------------- | ------------ | ------------\r\r\nM1 | 0.78 | 0.61 | 5.5 | 34.7 | 10.4\r\r\nM2 | 0.88 | 0.77 | 5 | 58.4 | 16.26\r\r\nM3 | 0.61 | 0.37 | 5.9 | 39.9 | 11.7\r\r\nM4 | 0.76 | 0.58 | 4.2 | 57.7 | 15.81\r\r\nM5 | 0.84 | 0.71 | 3.2 | 48 | 13.19\r\r\nM6 | 0.76 | 0.58 | 4 | 68.8 | 18.54\r\r\nM7 | 0.81 | 0.66 | 6.5 | 38.2 | 11.54\r\r\nM8 | 0.81 | 0.66 | 3.2 | 32.8 | 9.37\r\r\n\r\r\n## Output Dataset\r\r\nFund Name | P1 | P2 | P3 | P4 | P5 | TOPSIS Score | Rank\r\r\n------------ | ------------- | ------------ | ------------- | ------------ | ------------ | ------------ | ------------\r\r\nM1 | 0.78 | 0.61 | 5.5 | 34.7 | 10.4 | 0.5303740545041122 | 4\r\r\nM2 | 0.88 | 0.77 | 5 | 58.4 | 16.26 | 0.5372510220778413 | 3\r\r\nM3 | 0.61 | 0.37 | 5.9 | 39.9 | 11.7 | 0.4715707210914604 | 8\r\r\nM4 | 0.76 | 0.58 | 4.2 | 57.7 | 15.81 | 0.5099483054760279 | 6\r\r\nM5 | 0.84 | 0.71 | 3.2 | 48 | 13.19 | 0.57723478293325 | 1\r\r\nM6 | 0.76 | 0.58 | 4 | 68.8 | 18.54 | 0.49447887833737925 | 7\r\r\nM7 | 0.81 | 0.66 | 6.5 | 38.2 | 11.54 | 0.5244107252631429 | 5\r\r\nM8 | 0.81 | 0.66 | 3.2 | 32.8 | 9.37 | 0.5576533672285703 | 2 \r\r\n\r\r\n<br>\r\r\n\r\r\n## Important Points\r\r\n1) There should be only numeric columns except the first column i.e. Fund Name.\r\r\n2) Input file must contain atleast three columns.\r\r\n\r\r\n<br>\r\r\n\r\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Topsis package",
    "version": "1.0",
    "project_urls": null,
    "split_keywords": [
        "python",
        "topsis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5e192c439ab576fee02803ac53ead9a68970c1c0c1767a4560bab444384e9414",
                "md5": "23c65d02afa4b7527c9aa2868e7029c5",
                "sha256": "9b52152e609da5bee6495630b13531d8060a7e6c3b125753c6125c6d96da9c78"
            },
            "downloads": -1,
            "filename": "Topsis-Ramjas-102117159-1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "23c65d02afa4b7527c9aa2868e7029c5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3609,
            "upload_time": "2024-01-28T21:30:44",
            "upload_time_iso_8601": "2024-01-28T21:30:44.468201Z",
            "url": "https://files.pythonhosted.org/packages/5e/19/2c439ab576fee02803ac53ead9a68970c1c0c1767a4560bab444384e9414/Topsis-Ramjas-102117159-1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-28 21:30:44",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "topsis-ramjas-102117159"
}
        
Elapsed time: 4.15363s