# Automated Machine Learning Framework for Data Analysis
[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)
## Key Features
- Automated Model Selection: The framework automatically selects the most suitable machine learning model based on the characteristics of the dataset.
- Feature Engineering: It automatically applies various feature engineering techniques to preprocess the data and enhance the predictive power of the models.
- Hyperparameter Optimization: The library performs hyperparameter optimization to fine-tune the models and improve their performance.
- Performance Evaluation: It provides comprehensive evaluation metrics to assess the performance of the models and compare different approaches.
## Usage
- Make sure you have Python installed in your system.
- Run Following command in the Terminal.
```
pip install UAutoml
```
## Example
```
# test.py
import UAutoml
## Make sure u have follwing paramters
dataset = '/Path'
Target = 'Column_Name'
(this are optional)
Hyper_optimazation: If needed set value to 1 or in default 0
epochs: IN default its 5 you can set your requirements
## To run
# To get full automated process
r = UAutoml.process_data(dataset,Target)
# To get the features data
features = UAutoml.feature(dataset,Target)
```
## Run the following Script.
```
python test.py
```
## Note
- I have tried to implement all the functionality, it might have some bugs also. Ignore that or please try to solve that bug.
Raw data
{
"_id": null,
"home_page": "https://github.com/ujjwalredd/Automated-Machine-Learning-Framework-for-Data-Analysis",
"name": "UAutoml",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "ML,Auto Data Analysis,models",
"author": "Ujjwal Reddy K S",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/41/68/754b20b1dd793952535ea3a115643d07f759abfa5e1a643a79e34371c58c/UAutoml-0.0.4.tar.gz",
"platform": null,
"description": "# Automated Machine Learning Framework for Data Analysis\n\n[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/) \n[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/) \n\n\n## Key Features\n\n- Automated Model Selection: The framework automatically selects the most suitable machine learning model based on the characteristics of the dataset.\n- Feature Engineering: It automatically applies various feature engineering techniques to preprocess the data and enhance the predictive power of the models.\n- Hyperparameter Optimization: The library performs hyperparameter optimization to fine-tune the models and improve their performance.\n- Performance Evaluation: It provides comprehensive evaluation metrics to assess the performance of the models and compare different approaches.\n\n## Usage\n\n- Make sure you have Python installed in your system.\n- Run Following command in the Terminal.\n ```\n pip install UAutoml\n ```\n## Example\n\n ```\n# test.py\nimport UAutoml\n\n## Make sure u have follwing paramters\ndataset = '/Path'\nTarget = 'Column_Name'\n\n(this are optional)\nHyper_optimazation: If needed set value to 1 or in default 0\nepochs: IN default its 5 you can set your requirements\n\n## To run\n\n# To get full automated process\nr = UAutoml.process_data(dataset,Target) \n\n# To get the features data\nfeatures = UAutoml.feature(dataset,Target)\n\n```\n\n## Run the following Script.\n ```\n python test.py\n ```\n\n## Note \n- I have tried to implement all the functionality, it might have some bugs also. Ignore that or please try to solve that bug.\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Automated Machine Learning Framework for Data Analysis.",
"version": "0.0.4",
"project_urls": {
"Homepage": "https://github.com/ujjwalredd/Automated-Machine-Learning-Framework-for-Data-Analysis"
},
"split_keywords": [
"ml",
"auto data analysis",
"models"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "30bf51dc930c2187facfab743c4982fa042482c2d6768a5c4f16948374298ade",
"md5": "0180800a255e8d96c02f9435e445508a",
"sha256": "5eac9efb89a1ac154fd3cc5d1c9541ed8ff6dfea9b1de5f15c85883a7bd0fef6"
},
"downloads": -1,
"filename": "UAutoml-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0180800a255e8d96c02f9435e445508a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 5514,
"upload_time": "2023-06-14T07:27:00",
"upload_time_iso_8601": "2023-06-14T07:27:00.785336Z",
"url": "https://files.pythonhosted.org/packages/30/bf/51dc930c2187facfab743c4982fa042482c2d6768a5c4f16948374298ade/UAutoml-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4168754b20b1dd793952535ea3a115643d07f759abfa5e1a643a79e34371c58c",
"md5": "dd08219a47be092fe9f5ca95cb5a4241",
"sha256": "40a8b9a82999e8427436a0c2f7375d29c29c6335a3b032c121d2f369b7e57ed4"
},
"downloads": -1,
"filename": "UAutoml-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "dd08219a47be092fe9f5ca95cb5a4241",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 5393,
"upload_time": "2023-06-14T07:27:02",
"upload_time_iso_8601": "2023-06-14T07:27:02.581682Z",
"url": "https://files.pythonhosted.org/packages/41/68/754b20b1dd793952535ea3a115643d07f759abfa5e1a643a79e34371c58c/UAutoml-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-14 07:27:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ujjwalredd",
"github_project": "Automated-Machine-Learning-Framework-for-Data-Analysis",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "uautoml"
}