Name | UltraQuery JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | A Blazing fast DataScience library for CSV,txt,SQL,Dictionary reading and CLI Plotting |
upload_time | 2025-08-08 07:11:45 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.6 |
license | None |
keywords |
cli
csv
data
query
plot
visualization
ultraquery
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# UltraQuery
UltraQuery is a fast and lightweight Python module + CLI tool for:
- ๐ Reading `.csv`, `.txt`, and `.sqlite` files
- ๐๏ธ Viewing data or building DataFrame-like structures
- ๐ Plotting directly from terminal using CLI flags
- โ๏ธ Powered by a custom **C++ engine** for high performance
---
## ๐ Version
- **v0.1.0**
- Released: **08-08-2025**
- Authors: Mayank Chaudhary, Krishna Agarwal, Abhedhya Faujdar
---
## ๐ฆ Installation
```bash
pip install UltraQuery
```
- [GitHub Repository](https://github.com/krishna-agarwal44546/UltraQuery)
- [PyPI Page](https://pypi.org/project/UltraQuery/)
---
## ๐ Python Usage
```python
from ultraquery import UltraQuery
uq = UltraQuery.UltraQuery()
data={
"name" : ["adam","james","sofia"],
"age" : [23,63,87]
}
uq.viewdata("cars.csv", "year")
uq.df("cars.csv", limit=100)
uq.plot("cars.csv", xcol="year", ycol="price", graph_type="line")
uq.read_dict(data)
```
---
## ๐ป CLI Usage
```bash
ultraquery -f cars.csv -l 50 -df
ultraquery -f cars.csv -l 100 -plt -x year -y price -typ line
```
---
## ๐ฉ CLI Flags
| Flag | Description |
|---------------|-----------------------------------|
| `-f` | Path to CSV/SQL file |
| `-df` | Show data as a table |
| `-l` | Limit number of rows to load |
| `-plt` | Enable graph plotting |
| `-x` | Set X-axis column |
| `-y` | Set Y-axis column |
| `-typ` | Type of plot (`bar`, `pie`, etc.) |
| `-sql` | Enable SQLite mode |
| `table` | Specify SQLite table |
| `column_list` | View column list |
| `vc` | View raw column data |
| `dict` | Get Dataframe from Dictionary |
| `col` | Enter Column |
---
## ๐ง Available Functions
```python
viewcolumn(file) # List columns from a CSV
viewdata(file, col) # Display elements of column col
df(file, n) # Load data into custom frame
viewsql(file, table, n) # Load rows from SQLite
plot(file, x, y, typ) # Plot selected columns
read_dict(dictionary) # Give dataframe directly from a dictionary
```
### โ
Supported Plot Types
- bar
- line
- scatter
- pie
- histogram
---
## ๐ Example
```bash
ultraquery -f sales.csv -l 100 -plt -x month -y revenue -typ bar
```
---
## ๐ Features
- โก Fast CSV reading via C++ engine
- ๐งช Native Python class interface
- ๐งญ CLI for quick data exploration
- ๐จ Easy plotting with matplotlib
- ๐๏ธ SQLite table reading support
---
## ๐ Engine Details
- Uses native shared library (`engine.dll` / `engine.so`)
- Loaded via `ctypes`
- Core C++ functions: `readcsv`, `columnsget`, `getdata`, `dataframe`,`read_dict`
---
## ๐ฅ Contributors
- [Contributors.txt](https://github.com/krishna-agarwal44546/UltraQuery/blob/main/Contributors.txt)
## ๐ License
- [LICENSE.txt](https://github.com/krishna-agarwal44546/UltraQuery/blob/main/LICENSE.txt)
---
Raw data
{
"_id": null,
"home_page": null,
"name": "UltraQuery",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "cli, csv, data, query, plot, visualization, ultraquery",
"author": null,
"author_email": "\"Mayank Chaudhary , Krishna Agarwal , Abhedhya faujdar\" <mayankchaudhary92197@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/5b/74/29cda68f1497a0124b4f3328117e6f172aa54668e27dbb31980e8d28fc1a/ultraquery-0.1.0.tar.gz",
"platform": null,
"description": "# UltraQuery\r\n\r\nUltraQuery is a fast and lightweight Python module + CLI tool for:\r\n\r\n- \ud83d\udcc2 Reading `.csv`, `.txt`, and `.sqlite` files \r\n- \ud83d\udc41\ufe0f Viewing data or building DataFrame-like structures \r\n- \ud83d\udcc8 Plotting directly from terminal using CLI flags \r\n- \u2699\ufe0f Powered by a custom **C++ engine** for high performance \r\n\r\n---\r\n\r\n## \ud83d\udd16 Version\r\n\r\n- **v0.1.0**\r\n- Released: **08-08-2025**\r\n- Authors: Mayank Chaudhary, Krishna Agarwal, Abhedhya Faujdar\r\n\r\n---\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n```bash\r\npip install UltraQuery\r\n```\r\n\r\n- [GitHub Repository](https://github.com/krishna-agarwal44546/UltraQuery) \r\n- [PyPI Page](https://pypi.org/project/UltraQuery/)\r\n\r\n---\r\n\r\n## \ud83d\udc0d Python Usage\r\n\r\n```python\r\nfrom ultraquery import UltraQuery \r\n\r\nuq = UltraQuery.UltraQuery() \r\n\r\ndata={\r\n \"name\" : [\"adam\",\"james\",\"sofia\"],\r\n \"age\" : [23,63,87]\r\n}\r\n\r\nuq.viewdata(\"cars.csv\", \"year\") \r\nuq.df(\"cars.csv\", limit=100) \r\nuq.plot(\"cars.csv\", xcol=\"year\", ycol=\"price\", graph_type=\"line\")\r\nuq.read_dict(data)\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udcbb CLI Usage\r\n\r\n```bash\r\nultraquery -f cars.csv -l 50 -df\r\nultraquery -f cars.csv -l 100 -plt -x year -y price -typ line\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udea9 CLI Flags\r\n\r\n| Flag | Description |\r\n|---------------|-----------------------------------|\r\n| `-f` | Path to CSV/SQL file |\r\n| `-df` | Show data as a table |\r\n| `-l` | Limit number of rows to load |\r\n| `-plt` | Enable graph plotting |\r\n| `-x` | Set X-axis column |\r\n| `-y` | Set Y-axis column |\r\n| `-typ` | Type of plot (`bar`, `pie`, etc.) |\r\n| `-sql` | Enable SQLite mode |\r\n| `table` | Specify SQLite table |\r\n| `column_list` | View column list |\r\n| `vc` | View raw column data |\r\n| `dict` | Get Dataframe from Dictionary |\r\n| `col` | Enter Column |\r\n\r\n---\r\n\r\n## \ud83e\udde0 Available Functions\r\n\r\n```python\r\nviewcolumn(file) # List columns from a CSV \r\nviewdata(file, col) # Display elements of column col \r\ndf(file, n) # Load data into custom frame \r\nviewsql(file, table, n) # Load rows from SQLite \r\nplot(file, x, y, typ) # Plot selected columns\r\nread_dict(dictionary) # Give dataframe directly from a dictionary\r\n```\r\n\r\n### \u2705 Supported Plot Types\r\n- bar\r\n- line\r\n- scatter\r\n- pie\r\n- histogram\r\n\r\n---\r\n\r\n## \ud83d\udcca Example\r\n\r\n```bash\r\nultraquery -f sales.csv -l 100 -plt -x month -y revenue -typ bar\r\n```\r\n\r\n---\r\n\r\n## \ud83d\ude80 Features\r\n\r\n- \u26a1 Fast CSV reading via C++ engine \r\n- \ud83e\uddea Native Python class interface \r\n- \ud83e\udded CLI for quick data exploration \r\n- \ud83c\udfa8 Easy plotting with matplotlib \r\n- \ud83d\uddc4\ufe0f SQLite table reading support \r\n\r\n---\r\n\r\n## \ud83d\udd0d Engine Details\r\n\r\n- Uses native shared library (`engine.dll` / `engine.so`) \r\n- Loaded via `ctypes` \r\n- Core C++ functions: `readcsv`, `columnsget`, `getdata`, `dataframe`,`read_dict`\r\n\r\n---\r\n\r\n## \ud83d\udc65 Contributors\r\n\r\n- [Contributors.txt](https://github.com/krishna-agarwal44546/UltraQuery/blob/main/Contributors.txt)\r\n\r\n## \ud83d\udcc4 License\r\n\r\n- [LICENSE.txt](https://github.com/krishna-agarwal44546/UltraQuery/blob/main/LICENSE.txt)\r\n\r\n---\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A Blazing fast DataScience library for CSV,txt,SQL,Dictionary reading and CLI Plotting",
"version": "0.1.0",
"project_urls": {
"Contributors": "https://github.com/krishna-agarwal44546/UltraQuery/blob/main/Contributors.txt",
"Documentation": "https://github.com/krishna-agarwal44546/UltraQuery/blob/main/Documentation.pdf",
"Homepage": "https://github.com/krishna-agarwal44546/UltraQuery",
"LICENSE": "https://github.com/krishna-agarwal44546/UltraQuery/blob/main/LICENSE.txt"
},
"split_keywords": [
"cli",
" csv",
" data",
" query",
" plot",
" visualization",
" ultraquery"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "62839842aaa2ed579634e398915ca63341f6e081c4400de691e369f3783f62bb",
"md5": "5aadce426c0b865927a73b08270a076b",
"sha256": "291639b42979edd635dd8b4acb0173e11b1e126d8bdb68fced7d129a96495f34"
},
"downloads": -1,
"filename": "ultraquery-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5aadce426c0b865927a73b08270a076b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 1231820,
"upload_time": "2025-08-08T07:11:42",
"upload_time_iso_8601": "2025-08-08T07:11:42.486404Z",
"url": "https://files.pythonhosted.org/packages/62/83/9842aaa2ed579634e398915ca63341f6e081c4400de691e369f3783f62bb/ultraquery-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5b7429cda68f1497a0124b4f3328117e6f172aa54668e27dbb31980e8d28fc1a",
"md5": "2a34568a3659ed02a71343b01543c450",
"sha256": "b799f472d83f7d1ac0df328791a8c25a634148ac57929ff6d70e4ba42156757c"
},
"downloads": -1,
"filename": "ultraquery-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "2a34568a3659ed02a71343b01543c450",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 1224120,
"upload_time": "2025-08-08T07:11:45",
"upload_time_iso_8601": "2025-08-08T07:11:45.122210Z",
"url": "https://files.pythonhosted.org/packages/5b/74/29cda68f1497a0124b4f3328117e6f172aa54668e27dbb31980e8d28fc1a/ultraquery-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-08 07:11:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "krishna-agarwal44546",
"github_project": "UltraQuery",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ultraquery"
}