VisCARS


NameVisCARS JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/predict-idlab/VisCARS
SummaryVisCARS: Knowledge Graph-based Context-Aware Recommender System for Visualizations
upload_time2024-02-12 15:57:18
maintainer
docs_urlNone
authorPieter Moens
requires_python>=3.9,<4.0
license
keywords recommender system visualizations context-aware
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # VisCARS: Graph-Based Context-Aware Visualization Recommendation System

![version](https://img.shields.io/pypi/v/viscars)

## Installation

Create a virtual environment using `virtualenv` or `anaconda3`:
```
conda create -n myenv python=3.9
conda activate myenv
```

Install the latest version from PyPI in your environment:
```
pip install viscars
```

## Basic usage

Load the dataset
```python
from rdflib import Graph

graph_ = Graph()
graph_.parse('../data/protego/protego_ddashboard.ttl')
graph_.parse('../data/protego/protego_zplus.ttl')
graph_.parse('../data/protego/visualizations.ttl')
```

Initialize the two-stage recommendation pipeline
```python
from viscars.dao import ContentRecommenderDAO, VisualizationRecommenderDAO
from viscars.recommenders.cacf import ContextAwareCollaborativeFiltering

# Initialize Content Recommender (stage 1)
content_dao = ContentRecommenderDAO(graph_)
content_recommender = ContextAwareCollaborativeFiltering(content_dao, cbcf_w=0.5, ubcf_w=0.5, verbose=False)

# Initialize Visualization Recommender (stage 2)
vis_dao = VisualizationRecommenderDAO(graph_)
visualization_recommender = ContextAwareCollaborativeFiltering(vis_dao, ubcf_w=1, verbose=False)
```

Run the pipeline for a user and context
```python
# user = 'https://dynamicdashboard.ilabt.imec.be/users/4'  # Operator
user = 'https://dynamicdashboard.ilabt.imec.be/users/5'  # Nurse

context = 'http://example.com/tx/patients/zplus_6'  # Diabetes

content_recommendations = content_recommender.predict(user, context, k=5)

# Find cutoff for Multiple-View recommendation
# We recommend the top x items, where x is the average number of items rated by users in the context
ratings = content_dao.ratings[(content_dao.ratings['c_id'] == context)]
c = int(ratings.value_counts('u_id').mean())

visualization_recommendations = []
for recommendation in content_recommendations[:c]:
    # Recommend visualizations
    recommendations = visualization_recommender.predict(user, recommendation['itemId'], k=5)
    visualization_recommendations.append({'propertyId': recommendation['itemId'], 'visualizationId': recommendations[0]['itemId']})
```

Example output

| propertyId                                                                                                            | visualizationId                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| .../things/zplus_6.lifestyle/properties/enriched-call                                                         | .../things/visualizations/enriched-call                                   |
| .../things/zplus_6.60%3A77%3A71%3A7D%3A93%3AD7%2Fservice0009/properties/org.dyamand.types.health.GlucoseLevel | .../things/visualizations/time-series-line-chart-with-time-range-selector |
| .../things/zplus_6.AQURA_10_10_145_9/properties/org.dyamand.aqura.AquraLocationState_Protego%20User           | .../things/visualizations/scrolling-table                                 |




## Citation


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/predict-idlab/VisCARS",
    "name": "VisCARS",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<4.0",
    "maintainer_email": "",
    "keywords": "recommender system,visualizations,context-aware",
    "author": "Pieter Moens",
    "author_email": "pieter.moens@ugent.be",
    "download_url": "",
    "platform": null,
    "description": "# VisCARS: Graph-Based Context-Aware Visualization Recommendation System\n\n![version](https://img.shields.io/pypi/v/viscars)\n\n## Installation\n\nCreate a virtual environment using `virtualenv` or `anaconda3`:\n```\nconda create -n myenv python=3.9\nconda activate myenv\n```\n\nInstall the latest version from PyPI in your environment:\n```\npip install viscars\n```\n\n## Basic usage\n\nLoad the dataset\n```python\nfrom rdflib import Graph\n\ngraph_ = Graph()\ngraph_.parse('../data/protego/protego_ddashboard.ttl')\ngraph_.parse('../data/protego/protego_zplus.ttl')\ngraph_.parse('../data/protego/visualizations.ttl')\n```\n\nInitialize the two-stage recommendation pipeline\n```python\nfrom viscars.dao import ContentRecommenderDAO, VisualizationRecommenderDAO\nfrom viscars.recommenders.cacf import ContextAwareCollaborativeFiltering\n\n# Initialize Content Recommender (stage 1)\ncontent_dao = ContentRecommenderDAO(graph_)\ncontent_recommender = ContextAwareCollaborativeFiltering(content_dao, cbcf_w=0.5, ubcf_w=0.5, verbose=False)\n\n# Initialize Visualization Recommender (stage 2)\nvis_dao = VisualizationRecommenderDAO(graph_)\nvisualization_recommender = ContextAwareCollaborativeFiltering(vis_dao, ubcf_w=1, verbose=False)\n```\n\nRun the pipeline for a user and context\n```python\n# user = 'https://dynamicdashboard.ilabt.imec.be/users/4'  # Operator\nuser = 'https://dynamicdashboard.ilabt.imec.be/users/5'  # Nurse\n\ncontext = 'http://example.com/tx/patients/zplus_6'  # Diabetes\n\ncontent_recommendations = content_recommender.predict(user, context, k=5)\n\n# Find cutoff for Multiple-View recommendation\n# We recommend the top x items, where x is the average number of items rated by users in the context\nratings = content_dao.ratings[(content_dao.ratings['c_id'] == context)]\nc = int(ratings.value_counts('u_id').mean())\n\nvisualization_recommendations = []\nfor recommendation in content_recommendations[:c]:\n    # Recommend visualizations\n    recommendations = visualization_recommender.predict(user, recommendation['itemId'], k=5)\n    visualization_recommendations.append({'propertyId': recommendation['itemId'], 'visualizationId': recommendations[0]['itemId']})\n```\n\nExample output\n\n| propertyId                                                                                                            | visualizationId                                                                  |\n|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|\n| .../things/zplus_6.lifestyle/properties/enriched-call                                                         | .../things/visualizations/enriched-call                                   |\n| .../things/zplus_6.60%3A77%3A71%3A7D%3A93%3AD7%2Fservice0009/properties/org.dyamand.types.health.GlucoseLevel | .../things/visualizations/time-series-line-chart-with-time-range-selector |\n| .../things/zplus_6.AQURA_10_10_145_9/properties/org.dyamand.aqura.AquraLocationState_Protego%20User           | .../things/visualizations/scrolling-table                                 |\n\n\n\n\n## Citation\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "VisCARS: Knowledge Graph-based Context-Aware Recommender System for Visualizations",
    "version": "1.0.2",
    "project_urls": {
        "Documentation": "https://github.com/predict-idlab/VisCARS",
        "Homepage": "https://github.com/predict-idlab/VisCARS",
        "Repository": "https://github.com/predict-idlab/VisCARS"
    },
    "split_keywords": [
        "recommender system",
        "visualizations",
        "context-aware"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8136647b76497a2cb7496174675a0d4daca62948a9f3223cbf3b397b8ca3e823",
                "md5": "26c3da71034c4769e0594b3d57a150f2",
                "sha256": "fe7d4223f3d2f0fc7ca31653b4c6a11064455613d947ab1ec6de35785a02aa7f"
            },
            "downloads": -1,
            "filename": "viscars-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "26c3da71034c4769e0594b3d57a150f2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<4.0",
            "size": 28733,
            "upload_time": "2024-02-12T15:57:18",
            "upload_time_iso_8601": "2024-02-12T15:57:18.911100Z",
            "url": "https://files.pythonhosted.org/packages/81/36/647b76497a2cb7496174675a0d4daca62948a9f3223cbf3b397b8ca3e823/viscars-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-12 15:57:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "predict-idlab",
    "github_project": "VisCARS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "viscars"
}
        
Elapsed time: 0.51548s