========
VoigtFit
========
Absorption line fitting implemented in Python.
If you use this software, please cite my paper on `arXiv <http://arxiv.org/abs/1803.01187>`_.
Please let me know that you're using VoigtFit by filling in this `short form <https://forms.gle/exPEsrPoyfB4Us7w9>`_.
This way I can keep you updated with critical updates.
Installation
============
Dependencies
------------
Python version >3.6 (tested on 3.6 - 3.9 so far).
VoigtFit depends on ``matplotlib``, ``numpy==1.20.3``, ``scipy``, ``h5py``, ``astropy``, ``lmfit``, and ``numba==0.55.0``.
You can install these using your favorite Python package manager such as
`conda <http://conda.pydata.org/docs/>`_ or pip_.
If you encounter issues with the installation of ``h5py`` make sure that you have the HDF5 library installed. If you use Homebrew as a package manager you can try this fix [following `stackoverflow <https://stackoverflow.com/questions/66741778/how-to-install-h5py-needed-for-keras-on-macos-with-m1>`_]::
brew install hdf5
export HDF5_DIR="$(brew --prefix hdf5)"
pip install --no-binary=h5py h5py
If you encounter issues with the installation of ``numba`` (happened for me on Mac M1 architecture), try the following::
arch -arm64 brew install llvm@11
LLVM_CONFIG="/opt/homebrew/Cellar/llvm@11/11.1.0_4/bin/llvm-config" arch -arm64 pip install llvmlite
before installing `numba`.
Using pip
---------
The easiest way to install the most recent stable version of ``VoigtFit`` is
using pip_::
pip install VoigtFit
|
If you encounter the following AttributeError when attempting to install via pip:
AttributeError: 'NoneType' object has no attribute 'splitlines'
Try running pip with the ``--upgrade`` option::
pip install --upgrade VoigtFit
From source
-----------
Alternatively, you can get the latest version of the source by cloning the git
repository::
git clone https://github.com/jkrogager/VoigtFit.git
Once you've downloaded the source, you can navigate into the root source
directory and run::
python setup.py install
If you encounter any problems, do not hesitate to raise an issue here.
Further documentation and how to use it
---------------------------------------
Check out the documentation_ for instructions of installation and use.
.. _pip: http://www.pip-installer.org/
.. _documentation: http://VoigtFit.readthedocs.io
Raw data
{
"_id": null,
"home_page": "https://github.com/jkrogager/VoigtFit",
"name": "VoigtFit",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.5",
"maintainer_email": null,
"keywords": "voigtfit absorption analysis",
"author": "Jens-Kristian Krogager",
"author_email": "krogager.jk@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/d0/60/4c4f5d298ed2ed5828ff797f2a8118345c9d7b7b55d8a46b6581ec7083b5/voigtfit-3.21.7.tar.gz",
"platform": null,
"description": "\n========\nVoigtFit\n========\n\nAbsorption line fitting implemented in Python.\n\nIf you use this software, please cite my paper on `arXiv <http://arxiv.org/abs/1803.01187>`_.\nPlease let me know that you're using VoigtFit by filling in this `short form <https://forms.gle/exPEsrPoyfB4Us7w9>`_.\nThis way I can keep you updated with critical updates.\n\n\nInstallation\n============\n\nDependencies\n------------\n\nPython version >3.6 (tested on 3.6 - 3.9 so far).\n\nVoigtFit depends on ``matplotlib``, ``numpy==1.20.3``, ``scipy``, ``h5py``, ``astropy``, ``lmfit``, and ``numba==0.55.0``.\nYou can install these using your favorite Python package manager such as\n`conda <http://conda.pydata.org/docs/>`_ or pip_.\n\nIf you encounter issues with the installation of ``h5py`` make sure that you have the HDF5 library installed. If you use Homebrew as a package manager you can try this fix [following `stackoverflow <https://stackoverflow.com/questions/66741778/how-to-install-h5py-needed-for-keras-on-macos-with-m1>`_]::\n\n brew install hdf5\n export HDF5_DIR=\"$(brew --prefix hdf5)\"\n pip install --no-binary=h5py h5py\n\nIf you encounter issues with the installation of ``numba`` (happened for me on Mac M1 architecture), try the following::\n\n arch -arm64 brew install llvm@11\n LLVM_CONFIG=\"/opt/homebrew/Cellar/llvm@11/11.1.0_4/bin/llvm-config\" arch -arm64 pip install llvmlite\n\nbefore installing `numba`.\n\n\nUsing pip\n---------\n\nThe easiest way to install the most recent stable version of ``VoigtFit`` is\nusing pip_::\n\n pip install VoigtFit\n\n|\n\nIf you encounter the following AttributeError when attempting to install via pip:\n\n AttributeError: 'NoneType' object has no attribute 'splitlines'\n\nTry running pip with the ``--upgrade`` option::\n\n pip install --upgrade VoigtFit\n\n\nFrom source\n-----------\n\nAlternatively, you can get the latest version of the source by cloning the git\nrepository::\n\n git clone https://github.com/jkrogager/VoigtFit.git\n\nOnce you've downloaded the source, you can navigate into the root source\ndirectory and run::\n\n python setup.py install\n\n\nIf you encounter any problems, do not hesitate to raise an issue here.\n\n\nFurther documentation and how to use it\n---------------------------------------\n\nCheck out the documentation_ for instructions of installation and use.\n\n.. _pip: http://www.pip-installer.org/\n.. _documentation: http://VoigtFit.readthedocs.io\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Voigt Profile Fitting in Python",
"version": "3.21.7",
"project_urls": {
"Homepage": "https://github.com/jkrogager/VoigtFit"
},
"split_keywords": [
"voigtfit",
"absorption",
"analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "02b98c402be38e8323aad86b665d59e9dbab9aa4bd5a609b63b7c26f28783f43",
"md5": "68f21b5947f0ab6c49744ac4b242c4f9",
"sha256": "28049079579912d42c8a4ec76fd021b4caabe4c457e5bcd46bd92162164e1ba7"
},
"downloads": -1,
"filename": "VoigtFit-3.21.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "68f21b5947f0ab6c49744ac4b242c4f9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.5",
"size": 2505114,
"upload_time": "2024-10-03T14:31:07",
"upload_time_iso_8601": "2024-10-03T14:31:07.539445Z",
"url": "https://files.pythonhosted.org/packages/02/b9/8c402be38e8323aad86b665d59e9dbab9aa4bd5a609b63b7c26f28783f43/VoigtFit-3.21.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d0604c4f5d298ed2ed5828ff797f2a8118345c9d7b7b55d8a46b6581ec7083b5",
"md5": "b4de00af4626dc9192e108c6ded0fe8b",
"sha256": "74549b946137895d9cf1658a44b647d877a24a9b149614e7ae947c7ba730ab65"
},
"downloads": -1,
"filename": "voigtfit-3.21.7.tar.gz",
"has_sig": false,
"md5_digest": "b4de00af4626dc9192e108c6ded0fe8b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.5",
"size": 6678890,
"upload_time": "2024-10-03T14:31:25",
"upload_time_iso_8601": "2024-10-03T14:31:25.120038Z",
"url": "https://files.pythonhosted.org/packages/d0/60/4c4f5d298ed2ed5828ff797f2a8118345c9d7b7b55d8a46b6581ec7083b5/voigtfit-3.21.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-03 14:31:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jkrogager",
"github_project": "VoigtFit",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "voigtfit"
}