Vrame


NameVrame JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryEfficiently parse and validate all columns in pandas DataFrame.
upload_time2024-03-29 12:22:53
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords pandas pd dataframe df validation validate parsing parse pydantic pydantic effcient effciently
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Vrame

Vrame is a Python library designed to efficiently parse and validate all columns in pandas DataFrame. It leverages the vectorized operations of pandas to significantly speed up the validation process, making it a powerful tool for data validation in data science and machine learning projects.

## Features

- **Vectorized Validation**: Utilizes pandas' vectorized operations for fast and efficient data validation.
- **Similar Syntax to Pydantic**: Offers a familiar API for those who have used Pydantic, making it easy to adopt.
- **Custom Validators**: Allows for the definition of custom validation rules to meet specific data requirements.

## Installation

To install Vrame, use pip:

    pip install vrame


## Usage

First, define a schema for your DataFrame using Vrame's syntax, which is similar to Pydantic's:
    
    import pandas as pd
    import numpy as np
    from vrame.basemodel import BaseModel
    from vrame.column_types import (
        Integer,
        Float,
        Boolean,
        Datetime,
        String,
        List,
        Tuple,
        Dictionary,
        Set,
        Object
    )
    
    
    class Model(BaseModel):
        integer = Integer(lower=-1, upper=6, nullable=True)
        float = Float(lower=-1.0, upper=6.0, nullable=True)
        bool = Boolean(nullable=True)
        datetime = Datetime(lower="2024-03-20", upper="2024-03-21", nullable=True)
        list = List(nullable=True, min_items=1, max_items=3)
        tuple = Tuple(nullable=True, min_items=1, max_items=3)
        dictionary = Dictionary(nullable=True, min_items=1, max_items=3)
        set = Set(nullable=True, min_items=1, max_items=3)
        string = String(min_length=0, max_length=5, nullable=True)
        object = Object(nullable=True)
    
    
    if __name__ == "__main__":
        df = pd.DataFrame(
            {
                'integer': [1, "2", 3, 4, np.nan],
                'float': [1.0, "2.0", 3, "4", "5"],
                'bool': [True, "False", "True", False, False],
                'datetime': [
                    "2024-03-20",
                    "2024-03-21",
                    "2024-03-21",
                    "2024-03-21",
                    "2024-03-21"
                ],
                'list': [[1, 2], "[3, 4]", [5, 6], [7, 8], [9, 10]],
                'tuple': [(1, 2), "(3, 4)", (5, 6), (7, 8), (9, 10)],
                'dictionary': [
                    {'a': 1, 'b': 2.1},
                    "{'e': 3, 'f': 4.0}",
                    {'a': 1, 'b': 2.1},
                    {'a': 1, 'b': 2.1},
                    {'a': 1, 'b': 2.1}
                ],
                'set': [{1, 2}, "{1, 2}", {1, 2}, {1, 2}, {1, 2}],
                'string': ["str1", "str2", "", "12345", "I"],
                'object': [1, 2.0, False, np.nan, None]
            }
        )

        m = Model(df)
        df = m.parse_and_validate()

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "Vrame",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "pandas, pd, dataframe, df, validation, validate, parsing, parse, pydantic, Pydantic, effcient, effciently",
    "author": null,
    "author_email": "Yuen Shing Yan Hindy <yuenshingyan@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/56/c4/28144a7cb9e0c51a1c7365b106885ad3b4ca6bf35ffaefa302072595a946/Vrame-1.0.3.tar.gz",
    "platform": null,
    "description": "# Vrame\r\n\r\nVrame is a Python library designed to efficiently parse and validate all columns in pandas DataFrame. It leverages the vectorized operations of pandas to significantly speed up the validation process, making it a powerful tool for data validation in data science and machine learning projects.\r\n\r\n## Features\r\n\r\n- **Vectorized Validation**: Utilizes pandas' vectorized operations for fast and efficient data validation.\r\n- **Similar Syntax to Pydantic**: Offers a familiar API for those who have used Pydantic, making it easy to adopt.\r\n- **Custom Validators**: Allows for the definition of custom validation rules to meet specific data requirements.\r\n\r\n## Installation\r\n\r\nTo install Vrame, use pip:\r\n\r\n    pip install vrame\r\n\r\n\r\n## Usage\r\n\r\nFirst, define a schema for your DataFrame using Vrame's syntax, which is similar to Pydantic's:\r\n    \r\n    import pandas as pd\r\n    import numpy as np\r\n    from vrame.basemodel import BaseModel\r\n    from vrame.column_types import (\r\n        Integer,\r\n        Float,\r\n        Boolean,\r\n        Datetime,\r\n        String,\r\n        List,\r\n        Tuple,\r\n        Dictionary,\r\n        Set,\r\n        Object\r\n    )\r\n    \r\n    \r\n    class Model(BaseModel):\r\n        integer = Integer(lower=-1, upper=6, nullable=True)\r\n        float = Float(lower=-1.0, upper=6.0, nullable=True)\r\n        bool = Boolean(nullable=True)\r\n        datetime = Datetime(lower=\"2024-03-20\", upper=\"2024-03-21\", nullable=True)\r\n        list = List(nullable=True, min_items=1, max_items=3)\r\n        tuple = Tuple(nullable=True, min_items=1, max_items=3)\r\n        dictionary = Dictionary(nullable=True, min_items=1, max_items=3)\r\n        set = Set(nullable=True, min_items=1, max_items=3)\r\n        string = String(min_length=0, max_length=5, nullable=True)\r\n        object = Object(nullable=True)\r\n    \r\n    \r\n    if __name__ == \"__main__\":\r\n        df = pd.DataFrame(\r\n            {\r\n                'integer': [1, \"2\", 3, 4, np.nan],\r\n                'float': [1.0, \"2.0\", 3, \"4\", \"5\"],\r\n                'bool': [True, \"False\", \"True\", False, False],\r\n                'datetime': [\r\n                    \"2024-03-20\",\r\n                    \"2024-03-21\",\r\n                    \"2024-03-21\",\r\n                    \"2024-03-21\",\r\n                    \"2024-03-21\"\r\n                ],\r\n                'list': [[1, 2], \"[3, 4]\", [5, 6], [7, 8], [9, 10]],\r\n                'tuple': [(1, 2), \"(3, 4)\", (5, 6), (7, 8), (9, 10)],\r\n                'dictionary': [\r\n                    {'a': 1, 'b': 2.1},\r\n                    \"{'e': 3, 'f': 4.0}\",\r\n                    {'a': 1, 'b': 2.1},\r\n                    {'a': 1, 'b': 2.1},\r\n                    {'a': 1, 'b': 2.1}\r\n                ],\r\n                'set': [{1, 2}, \"{1, 2}\", {1, 2}, {1, 2}, {1, 2}],\r\n                'string': [\"str1\", \"str2\", \"\", \"12345\", \"I\"],\r\n                'object': [1, 2.0, False, np.nan, None]\r\n            }\r\n        )\r\n\r\n        m = Model(df)\r\n        df = m.parse_and_validate()\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Efficiently parse and validate all columns in pandas DataFrame.",
    "version": "1.0.3",
    "project_urls": {
        "Homepage": "https://github.com/yuenshingyan/Vrame",
        "Issues": "https://github.com/yuenshingyan/Vrame/issues"
    },
    "split_keywords": [
        "pandas",
        " pd",
        " dataframe",
        " df",
        " validation",
        " validate",
        " parsing",
        " parse",
        " pydantic",
        " pydantic",
        " effcient",
        " effciently"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "08ae8e98f28f35762d0f66b94b13afabc0f8dc6b7d557217cdc64565337c4829",
                "md5": "5c46456946c77d0194055d8728e47363",
                "sha256": "fea500594250dde9fd438cdd419c4417234d19a9b8cc662cd6f38d3229c2b125"
            },
            "downloads": -1,
            "filename": "Vrame-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5c46456946c77d0194055d8728e47363",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 11496,
            "upload_time": "2024-03-29T12:22:51",
            "upload_time_iso_8601": "2024-03-29T12:22:51.366364Z",
            "url": "https://files.pythonhosted.org/packages/08/ae/8e98f28f35762d0f66b94b13afabc0f8dc6b7d557217cdc64565337c4829/Vrame-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "56c428144a7cb9e0c51a1c7365b106885ad3b4ca6bf35ffaefa302072595a946",
                "md5": "7b54f4a65489b8c332c9b9f33ade43f1",
                "sha256": "442fa0c253cce08a3adbe87349739873f8e69381debd8009f9bd2e743302a0d3"
            },
            "downloads": -1,
            "filename": "Vrame-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "7b54f4a65489b8c332c9b9f33ade43f1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 9899,
            "upload_time": "2024-03-29T12:22:53",
            "upload_time_iso_8601": "2024-03-29T12:22:53.268679Z",
            "url": "https://files.pythonhosted.org/packages/56/c4/28144a7cb9e0c51a1c7365b106885ad3b4ca6bf35ffaefa302072595a946/Vrame-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-29 12:22:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yuenshingyan",
    "github_project": "Vrame",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "vrame"
}
        
Elapsed time: 0.68498s