VulnTrain


NameVulnTrain JSON
Version 2.0.0 PyPI version JSON
download
home_pageNone
SummaryGenerate datasets amd models based on vulnerabilities data from Vulnerability-Lookup.
upload_time2025-09-05 12:36:07
maintainerNone
docs_urlNone
authorCédric Bonhomme
requires_python<4.0,>=3.11
licenseGPL-3.0-or-later
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # VulnTrain

[![Latest release](https://img.shields.io/github/release/vulnerability-lookup/VulnTrain.svg?style=flat-square)](https://github.com/vulnerability-lookup/VulnTrain/releases/latest)
[![License](https://img.shields.io/github/license/vulnerability-lookup/VulnTrain.svg?style=flat-square)](https://www.gnu.org/licenses/gpl-3.0.html)
[![PyPi version](https://img.shields.io/pypi/v/VulnTrain.svg?style=flat-square)](https://pypi.org/project/VulnTrain)


VulnTrain offers a suite of commands to generate diverse AI datasets and train models using
comprehensive vulnerability data from [Vulnerability-Lookup](https://github.com/vulnerability-lookup/vulnerability-lookup).
It harnesses over one million JSON records from all supported advisory sources to build high-quality, domain-specific models.
  
Additionally, data from the ``vulnerability-lookup:meta`` container, including enrichment sources such as vulnrichment and Fraunhofer FKIE,
is incorporated to enhance model quality.

Check out the datasets and models on Hugging Face: 

[![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-xl-dark.svg)](https://huggingface.co/CIRCL)

For more information about the use of AI in Vulnerability-Lookup, please refer to the
[user manual](https://www.vulnerability-lookup.org/user-manual/ai/).


## Usage

Install VulnTrain:

```bash
$ pipx install VulnTrain
```

Three types of commands are available:

- **Dataset generation**: Create and prepare datasets.
- **Model training**: Train models using the prepared datasets.
  - Train a model to **classify** vulnerabilities by severity. [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-sm-dark.svg)](https://huggingface.co/CIRCL/vulnerability-severity-classification-roberta-base)
  - Train a model for **text generation** to assist in writing vulnerability descriptions [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-sm-dark.svg)](https://huggingface.co/CIRCL/vulnerability-description-generation-gpt2#how-to-get-started-with-the-model)
- **Model validation**: Assess the performance of trained models (validations, benchmarks, etc.).


Check out the [documentation](docs/) for more information.


## How to cite

Bonhomme, C., & Dulaunoy, A. (2025). VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Version 1.4.0) [Computer software]. https://doi.org/10.48550/arXiv.2507.03607

```bibtex
@misc{bonhomme2025vlai,
    title={VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification},
    author={Cédric Bonhomme and Alexandre Dulaunoy},
    year={2025},
    eprint={2507.03607},
    archivePrefix={arXiv},
    primaryClass={cs.CR}
}
```


## License

[VulnTrain](https://github.com/vulnerability-lookup/VulnTrain) is licensed under
[GNU General Public License version 3](https://www.gnu.org/licenses/gpl-3.0.html)

~~~
Copyright (c) 2025 Computer Incident Response Center Luxembourg (CIRCL)
Copyright (C) 2025 Cédric Bonhomme - https://github.com/cedricbonhomme
Copyright (C) 2025 Léa Ulusan - https://github.com/3LS3-1F
~~~



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "VulnTrain",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "C\u00e9dric Bonhomme",
    "author_email": "cedric.bonhomme@circl.lu",
    "download_url": "https://files.pythonhosted.org/packages/d0/b3/6080a789fb273cd3e2ffef8867d5e26606c4c88aa5f40c37eb870e45ae16/vulntrain-2.0.0.tar.gz",
    "platform": null,
    "description": "# VulnTrain\n\n[![Latest release](https://img.shields.io/github/release/vulnerability-lookup/VulnTrain.svg?style=flat-square)](https://github.com/vulnerability-lookup/VulnTrain/releases/latest)\n[![License](https://img.shields.io/github/license/vulnerability-lookup/VulnTrain.svg?style=flat-square)](https://www.gnu.org/licenses/gpl-3.0.html)\n[![PyPi version](https://img.shields.io/pypi/v/VulnTrain.svg?style=flat-square)](https://pypi.org/project/VulnTrain)\n\n\nVulnTrain offers a suite of commands to generate diverse AI datasets and train models using\ncomprehensive vulnerability data from [Vulnerability-Lookup](https://github.com/vulnerability-lookup/vulnerability-lookup).\nIt harnesses over one million JSON records from all supported advisory sources to build high-quality, domain-specific models.\n  \nAdditionally, data from the ``vulnerability-lookup:meta`` container, including enrichment sources such as vulnrichment and Fraunhofer FKIE,\nis incorporated to enhance model quality.\n\nCheck out the datasets and models on Hugging Face: \n\n[![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-xl-dark.svg)](https://huggingface.co/CIRCL)\n\nFor more information about the use of AI in Vulnerability-Lookup, please refer to the\n[user manual](https://www.vulnerability-lookup.org/user-manual/ai/).\n\n\n## Usage\n\nInstall VulnTrain:\n\n```bash\n$ pipx install VulnTrain\n```\n\nThree types of commands are available:\n\n- **Dataset generation**: Create and prepare datasets.\n- **Model training**: Train models using the prepared datasets.\n  - Train a model to **classify** vulnerabilities by severity. [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-sm-dark.svg)](https://huggingface.co/CIRCL/vulnerability-severity-classification-roberta-base)\n  - Train a model for **text generation** to assist in writing vulnerability descriptions [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-sm-dark.svg)](https://huggingface.co/CIRCL/vulnerability-description-generation-gpt2#how-to-get-started-with-the-model)\n- **Model validation**: Assess the performance of trained models (validations, benchmarks, etc.).\n\n\nCheck out the [documentation](docs/) for more information.\n\n\n## How to cite\n\nBonhomme, C., & Dulaunoy, A. (2025). VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Version 1.4.0) [Computer software]. https://doi.org/10.48550/arXiv.2507.03607\n\n```bibtex\n@misc{bonhomme2025vlai,\n    title={VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification},\n    author={C\u00e9dric Bonhomme and Alexandre Dulaunoy},\n    year={2025},\n    eprint={2507.03607},\n    archivePrefix={arXiv},\n    primaryClass={cs.CR}\n}\n```\n\n\n## License\n\n[VulnTrain](https://github.com/vulnerability-lookup/VulnTrain) is licensed under\n[GNU General Public License version 3](https://www.gnu.org/licenses/gpl-3.0.html)\n\n~~~\nCopyright (c) 2025 Computer Incident Response Center Luxembourg (CIRCL)\nCopyright (C) 2025 C\u00e9dric Bonhomme - https://github.com/cedricbonhomme\nCopyright (C) 2025 L\u00e9a Ulusan - https://github.com/3LS3-1F\n~~~\n\n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "Generate datasets amd models based on vulnerabilities data from Vulnerability-Lookup.",
    "version": "2.0.0",
    "project_urls": {
        "Changelog": "https://github.com/vulnerability-lookup/VulnTrain/blob/main/CHANGELOG.md",
        "Homepage": "https://github.com/vulnerability-lookup/VulnTrain",
        "Repository": "https://github.com/vulnerability-lookup/VulnTrain"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fb4482bc219e486dfe704a52fdee67c11f692ae8cd1f2110d7ee4fe7695272c5",
                "md5": "7cb2c56bcb29d30df10499a7f43a03cc",
                "sha256": "593195e2b691ab44b169ada30e19a5f5a0b020a037cbee529c737e24a12e59fb"
            },
            "downloads": -1,
            "filename": "vulntrain-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7cb2c56bcb29d30df10499a7f43a03cc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.11",
            "size": 266423,
            "upload_time": "2025-09-05T12:36:05",
            "upload_time_iso_8601": "2025-09-05T12:36:05.973668Z",
            "url": "https://files.pythonhosted.org/packages/fb/44/82bc219e486dfe704a52fdee67c11f692ae8cd1f2110d7ee4fe7695272c5/vulntrain-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d0b36080a789fb273cd3e2ffef8867d5e26606c4c88aa5f40c37eb870e45ae16",
                "md5": "a3af31cad8829216649b48c16cba28a7",
                "sha256": "e54ba27db1fc4411d334eefbad389a7e4a6d1d5c58da9d31715d2429064e5f06"
            },
            "downloads": -1,
            "filename": "vulntrain-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a3af31cad8829216649b48c16cba28a7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.11",
            "size": 257400,
            "upload_time": "2025-09-05T12:36:07",
            "upload_time_iso_8601": "2025-09-05T12:36:07.636695Z",
            "url": "https://files.pythonhosted.org/packages/d0/b3/6080a789fb273cd3e2ffef8867d5e26606c4c88aa5f40c37eb870e45ae16/vulntrain-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-05 12:36:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "vulnerability-lookup",
    "github_project": "VulnTrain",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "vulntrain"
}
        
Elapsed time: 3.50572s