WaterOptim


NameWaterOptim JSON
Version 1.6.9 PyPI version JSON
download
home_pagehttps://wateroptim.readthedocs.io/en/latest/
Summarywater pinch tool
upload_time2023-04-05 11:44:22
maintainer
docs_urlNone
authorHedi ROMDHANA
requires_python>=3.4
licenseGPLv3
keywords water pinch process integration
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Water Pinch Analysis
[Read the docs](https://wateroptim.readthedocs.io/en/latest/)
A powerful pure-Python interface for optimizing industrial water networks
## Installation
``WaterOptim``  runs under Python 3.6+. To install it with [pip](https://pip.readthedocs.io/), run the following:

    pip install WaterOptim

To upgrade it with [pip](https://pip.readthedocs.io/), run the following:

    pip install --upgrade WaterOptim
## HeadingBasic Usage
``WaterOptim`` proposes water networks with optimized water recovery schemes to preserve freshwater and minimize wastewater production. The tool supports water networks with one or more pollutants.
The optimization strategy includes 3 steps:
- Inventory
- Minimization of Freshwater and Wastewater
- Design of Water-network
The inventory can be carried out on:
- **Water-using process**
- **Sources**
- **Sinks**

**Water-using process** involves pollution transfer. The pollution comes from the product or the process.
The inventory includes:
| Parameters | Description | Unit |
|--|--|--|
  |    ***mc***    | Mass flowrate of contaminant | kg/h |
  | ***cin_max***  | Maximum inlet concentration  | ppm  |
  | ***cout_max*** | Maximum outlet concentration | ppm  |
Example of **Water-using process** inventory:

      posts = [
                {"name":"process 1","cin_max":0,"cout_max":100,"mc":2},
                {"name":"process 2","cin_max":50,"cout_max":100,"mc":5},
                {"name":"process 3","cin_max":50,"cout_max":800,"mc":30},
                {"name":"process 4","cin_max":400,"cout_max":800,"mc":4}
              ]         
**Source** water flow, available for the **REUSE**.

The inventory includes:
|Parameter| Description | Unit|
|--|--|--|
  | ***m*** |    Water flowrate    | m3/h |
  | ***c*** | Outlet concentration | ppm  |

Example of **Sources** inventory:

      sources = [
                  {'name':'Distillation bottoms','c':0,'m':.8*3600/1000},
                  {'name':'Off-gas condensate','c':14,'m':5*3600/1000},
                  {'name':'Aqueous layer','c':25,'m':5.9*3600/1000},
                  {'name':'Ejector condensate','c':34,'m':1.4*3600/1000}]

**Sink** water requirement. The inventory includes:
|Parameter| Description | Unit|
|--|--|--|
  |    ***m***    |        Water flowrate       | m3/h |
  | ***cin_max*** | Maximum inlet concentration | ppm  |
|  |  |
  
Example of ``Sinks`` inventory:

      demands = [
                  {'name':'BFW0','cin_max':0,'m':1.2*3600/1000},
                  {'name':'BFW','cin_max':10,'m':5.8*3600/1000},
                  {'name':'BFW1','cin_max':1,'m':19.8*3600/1000}]
                         
## HeadingBasic compilation

Import this module with the following command:

      import WaterOptim.wpinch as wp

Compilation of  **water-using processes**

      r= wp.__pinch__(posts=posts,verbose=True,design=True)  


Using the **cascade** attribute you can access the optimization details:

       >> r.cascade

|  C ppm  |   Purity   | Purity Difference |   NWSD   |   CWSD   |    PWF    |  CPWF  |  FFW   |
|--|--|--|--|--|--|--|--|
|    -    |     -      |         -         |    -     | fw=90.00 |           |        |        |
|    0    |  1.000000  |                   |  -20.00  |          |           |        |        |
|         |            |      0.000050     |          |  70.00   |  0.003500 |        |        |
   |    50   |  0.999950  |                   | -140.00  |          |           |  0.00  | 70.00  |
   |         |            |      0.000050     |          |  -70.00  | -0.003500 |        |        |
   |  {100}  | {0.999900} |         {}        | {120.00} |    {}    |     {}    | {0.00} | {0.00} |
   |         |            |      0.000300     |          |  50.00   |  0.015000 |        |        |
   |   400   |  0.999600  |                   |  -10.00  |          |           |  0.01  | 37.50  |
  |         |            |      0.000400     |          |  40.00   |  0.016000 |        |        |
  |   800   |  0.999200  |                   |  50.00   |          |           |  0.03  | 38.75  |
  |         |            |      0.999200     |          |  90.00   | 89.928000 |        |        |
   | 1000000 |  0.000000  |                   |   0.00   |          |           | 89.96  | 89.96  |
   |    -    |     -      |         -         |    -     | ww=90.00 |           |        |        |
   |

To display the water network:

       >> r.design.draw()

## Dependencies

 - [scipy](https://www.scipy.org/) 
 - [numpy](https://numpy.org/)
 - [matplotlib](https://matplotlib.org/)
 - [graphviz](https://graphviz.org/)

## Acknowledgments

The authors wish to thank the French National Research Agency [ANR](https://anr.fr/Projet-ANR-17-CE10-0015) for their funding, and the partners of the project [MINIMEAU](https://minimeau.fr/) led by **AgroParisTech** (French higher education and public research institute), in collaboration with **ProSim** (Expert in process simulation) **ACTALIA**, **CRITT**, **CTCPA**, **IFV**, **ITERG** (Centers of expertise for the food industry), and **INRAE ELSA** (French institute for agriculture, food and environment). 

            

Raw data

            {
    "_id": null,
    "home_page": "https://wateroptim.readthedocs.io/en/latest/",
    "name": "WaterOptim",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.4",
    "maintainer_email": "",
    "keywords": "water,pinch,process,integration",
    "author": "Hedi ROMDHANA",
    "author_email": "hedi.romdhana@agroparistech.fr",
    "download_url": "",
    "platform": null,
    "description": "## Water Pinch Analysis\n[Read the docs](https://wateroptim.readthedocs.io/en/latest/)\nA powerful pure-Python interface for optimizing industrial water networks\n## Installation\n``WaterOptim``  runs under Python 3.6+. To install it with [pip](https://pip.readthedocs.io/), run the following:\n\n    pip install WaterOptim\n\nTo upgrade it with [pip](https://pip.readthedocs.io/), run the following:\n\n    pip install --upgrade WaterOptim\n## HeadingBasic Usage\n``WaterOptim`` proposes water networks with optimized water recovery schemes to preserve freshwater and minimize wastewater production. The tool supports water networks with one or more pollutants.\nThe optimization strategy includes 3 steps:\n- Inventory\n- Minimization of Freshwater and Wastewater\n- Design of Water-network\nThe inventory can be carried out on:\n- **Water-using process**\n- **Sources**\n- **Sinks**\n\n**Water-using process** involves pollution transfer. The pollution comes from the product or the process.\nThe inventory includes:\n| Parameters | Description | Unit |\n|--|--|--|\n  |    ***mc***    | Mass flowrate of contaminant | kg/h |\n  | ***cin_max***  | Maximum inlet concentration  | ppm  |\n  | ***cout_max*** | Maximum outlet concentration | ppm  |\nExample of **Water-using process** inventory:\n\n      posts = [\n                {\"name\":\"process 1\",\"cin_max\":0,\"cout_max\":100,\"mc\":2},\n                {\"name\":\"process 2\",\"cin_max\":50,\"cout_max\":100,\"mc\":5},\n                {\"name\":\"process 3\",\"cin_max\":50,\"cout_max\":800,\"mc\":30},\n                {\"name\":\"process 4\",\"cin_max\":400,\"cout_max\":800,\"mc\":4}\n              ]         \n**Source** water flow, available for the **REUSE**.\n\nThe inventory includes:\n|Parameter| Description | Unit|\n|--|--|--|\n  | ***m*** |    Water flowrate    | m3/h |\n  | ***c*** | Outlet concentration | ppm  |\n\nExample of **Sources** inventory:\n\n      sources = [\n                  {'name':'Distillation bottoms','c':0,'m':.8*3600/1000},\n                  {'name':'Off-gas condensate','c':14,'m':5*3600/1000},\n                  {'name':'Aqueous layer','c':25,'m':5.9*3600/1000},\n                  {'name':'Ejector condensate','c':34,'m':1.4*3600/1000}]\n\n**Sink** water requirement. The inventory includes:\n|Parameter| Description | Unit|\n|--|--|--|\n  |    ***m***    |        Water flowrate       | m3/h |\n  | ***cin_max*** | Maximum inlet concentration | ppm  |\n|  |  |\n  \nExample of ``Sinks`` inventory:\n\n      demands = [\n                  {'name':'BFW0','cin_max':0,'m':1.2*3600/1000},\n                  {'name':'BFW','cin_max':10,'m':5.8*3600/1000},\n                  {'name':'BFW1','cin_max':1,'m':19.8*3600/1000}]\n                         \n## HeadingBasic compilation\n\nImport this module with the following command:\n\n      import WaterOptim.wpinch as wp\n\nCompilation of  **water-using processes**\n\n      r= wp.__pinch__(posts=posts,verbose=True,design=True)  \n\n\nUsing the **cascade** attribute you can access the optimization details:\n\n       >> r.cascade\n\n|  C ppm  |   Purity   | Purity Difference |   NWSD   |   CWSD   |    PWF    |  CPWF  |  FFW   |\n|--|--|--|--|--|--|--|--|\n|    -    |     -      |         -         |    -     | fw=90.00 |           |        |        |\n|    0    |  1.000000  |                   |  -20.00  |          |           |        |        |\n|         |            |      0.000050     |          |  70.00   |  0.003500 |        |        |\n   |    50   |  0.999950  |                   | -140.00  |          |           |  0.00  | 70.00  |\n   |         |            |      0.000050     |          |  -70.00  | -0.003500 |        |        |\n   |  {100}  | {0.999900} |         {}        | {120.00} |    {}    |     {}    | {0.00} | {0.00} |\n   |         |            |      0.000300     |          |  50.00   |  0.015000 |        |        |\n   |   400   |  0.999600  |                   |  -10.00  |          |           |  0.01  | 37.50  |\n  |         |            |      0.000400     |          |  40.00   |  0.016000 |        |        |\n  |   800   |  0.999200  |                   |  50.00   |          |           |  0.03  | 38.75  |\n  |         |            |      0.999200     |          |  90.00   | 89.928000 |        |        |\n   | 1000000 |  0.000000  |                   |   0.00   |          |           | 89.96  | 89.96  |\n   |    -    |     -      |         -         |    -     | ww=90.00 |           |        |        |\n   |\n\nTo display the water network:\n\n       >> r.design.draw()\n\n## Dependencies\n\n - [scipy](https://www.scipy.org/) \n - [numpy](https://numpy.org/)\n - [matplotlib](https://matplotlib.org/)\n - [graphviz](https://graphviz.org/)\n\n## Acknowledgments\n\nThe authors wish to thank the French National Research Agency [ANR](https://anr.fr/Projet-ANR-17-CE10-0015) for their funding, and the partners of the project [MINIMEAU](https://minimeau.fr/) led by **AgroParisTech** (French higher education and public research institute), in collaboration with **ProSim** (Expert in process simulation) **ACTALIA**, **CRITT**, **CTCPA**, **IFV**, **ITERG** (Centers of expertise for the food industry), and **INRAE ELSA** (French institute for agriculture, food and environment). \n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "water pinch tool",
    "version": "1.6.9",
    "split_keywords": [
        "water",
        "pinch",
        "process",
        "integration"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ff658aae28b8ce24f002d8fdfac894a04d4665d8ae25f9195cee679666c7d1b",
                "md5": "8133e90ccd36b7875f760e43e91065e2",
                "sha256": "f7282d3155a0c6906a6d88075853b8f9659fbba935375998641b82c33b5ee218"
            },
            "downloads": -1,
            "filename": "WaterOptim-1.6.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8133e90ccd36b7875f760e43e91065e2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.4",
            "size": 296935,
            "upload_time": "2023-04-05T11:44:22",
            "upload_time_iso_8601": "2023-04-05T11:44:22.199462Z",
            "url": "https://files.pythonhosted.org/packages/5f/f6/58aae28b8ce24f002d8fdfac894a04d4665d8ae25f9195cee679666c7d1b/WaterOptim-1.6.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-05 11:44:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "wateroptim"
}
        
Elapsed time: 0.29386s