a-pandas-ex-apply-against-all


Namea-pandas-ex-apply-against-all JSON
Version 0.12 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/a_pandas_ex_apply_against_all
SummaryApply each value in a column against the whole column
upload_time2022-12-19 16:14:13
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords pandas dataframe apply
VCS
bugtrack_url
requirements pandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Apply each value in a column against the whole column



```python

pip install a-pandas-ex-apply-against-all

```



```python



from a_pandas_ex_apply_against_all import pd_add_apply_each

import pandas as pd

pd_add_apply_each()

df = pd.read_csv(

    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"

)

df1 = df.PassengerId.s_apply_each(

    expression="str(x) + str(y)", # use always x/y in your expression

    exception_value=pd.NA,

    diagonal_value=pd.NA,

    print_exception=True,

)

print(df1)

      0     1     2     3     4    ...     886     887     888     889     890

0    <NA>    12    13    14    15  ...    1887    1888    1889    1890    1891

1      21  <NA>    23    24    25  ...    2887    2888    2889    2890    2891

2      31    32  <NA>    34    35  ...    3887    3888    3889    3890    3891

3      41    42    43  <NA>    45  ...    4887    4888    4889    4890    4891

4      51    52    53    54  <NA>  ...    5887    5888    5889    5890    5891

..    ...   ...   ...   ...   ...  ...     ...     ...     ...     ...     ...

886  8871  8872  8873  8874  8875  ...    <NA>  887888  887889  887890  887891

887  8881  8882  8883  8884  8885  ...  888887    <NA>  888889  888890  888891

888  8891  8892  8893  8894  8895  ...  889887  889888    <NA>  889890  889891

889  8901  8902  8903  8904  8905  ...  890887  890888  890889    <NA>  890891

890  8911  8912  8913  8914  8915  ...  891887  891888  891889  891890    <NA>

[891 rows x 891 columns]



# If you use a non-built-in function, you have to pass it as an argument, and use it as "func" in your expression

# An example using shapely (merging different polygons)



from shapely.ops import unary_union

import shapely

polyshape = []

for k in range(10):

    xmin = k * 10 + 5

    ymin = k * 10 + 5

    xmax = k * 20 + 10

    ymax = k * 20 + 10

    coordsalls = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax], [xmin, ymin]]

    po = shapely.geometry.Polygon(coordsalls)

    polyshape.append(po)

df2 = pd.DataFrame(polyshape)



df2

Out[7]: 

                                                   0

0            POLYGON ((5 5, 10 5, 10 10, 5 10, 5 5))

1      POLYGON ((15 15, 30 15, 30 30, 15 30, 15 15))

2      POLYGON ((25 25, 50 25, 50 50, 25 50, 25 25))

3      POLYGON ((35 35, 70 35, 70 70, 35 70, 35 35))

4      POLYGON ((45 45, 90 45, 90 90, 45 90, 45 45))

5  POLYGON ((55 55, 110 55, 110 110, 55 110, 55 55))

6  POLYGON ((65 65, 130 65, 130 130, 65 130, 65 65))

7  POLYGON ((75 75, 150 75, 150 150, 75 150, 75 75))

8  POLYGON ((85 85, 170 85, 170 170, 85 170, 85 85))

9  POLYGON ((95 95, 190 95, 190 190, 95 190, 95 95))





df1 = df2[0].s_apply_each(

    expression="func([x,y]) if x.intersects(y) else x", # use always x/y in your expression

    func=unary_union,

    exception_value=pd.NA,

    diagonal_value=pd.NA,

    print_exception=True,

    ignore_exceptions=True

)



Out[8]: 

                                                   0  ...                                                  9

0                                               <NA>  ...            POLYGON ((5 5, 10 5, 10 10, 5 10, 5 5))

1      POLYGON ((15 15, 30 15, 30 30, 15 30, 15 15))  ...      POLYGON ((15 15, 30 15, 30 30, 15 30, 15 15))

2      POLYGON ((25 25, 50 25, 50 50, 25 50, 25 25))  ...      POLYGON ((25 25, 50 25, 50 50, 25 50, 25 25))

3      POLYGON ((35 35, 70 35, 70 70, 35 70, 35 35))  ...      POLYGON ((35 35, 70 35, 70 70, 35 70, 35 35))

4      POLYGON ((45 45, 90 45, 90 90, 45 90, 45 45))  ...      POLYGON ((45 45, 90 45, 90 90, 45 90, 45 45))

5  POLYGON ((55 55, 110 55, 110 110, 55 110, 55 55))  ...  POLYGON ((110 55, 55 55, 55 110, 95 110, 95 19...

6  POLYGON ((65 65, 130 65, 130 130, 65 130, 65 65))  ...  POLYGON ((130 65, 65 65, 65 130, 95 130, 95 19...

7  POLYGON ((75 75, 150 75, 150 150, 75 150, 75 75))  ...  POLYGON ((150 75, 75 75, 75 150, 95 150, 95 19...

8  POLYGON ((85 85, 170 85, 170 170, 85 170, 85 85))  ...  POLYGON ((170 85, 85 85, 85 170, 95 170, 95 19...

9  POLYGON ((95 95, 190 95, 190 190, 95 190, 95 95))  ...                                               <NA>

[10 rows x 10 columns]



```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/a_pandas_ex_apply_against_all",
    "name": "a-pandas-ex-apply-against-all",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pandas,DataFrame,apply",
    "author": "Johannes Fischer",
    "author_email": "<aulasparticularesdealemaosp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/da/48/e79742f53c401daf82902884f5a3bbd22fb6bf35943031e7ebcdb4f6e285/a_pandas_ex_apply_against_all-0.12.tar.gz",
    "platform": null,
    "description": "\n# Apply each value in a column against the whole column\n\n\n\n```python\n\npip install a-pandas-ex-apply-against-all\n\n```\n\n\n\n```python\n\n\n\nfrom a_pandas_ex_apply_against_all import pd_add_apply_each\n\nimport pandas as pd\n\npd_add_apply_each()\n\ndf = pd.read_csv(\n\n    \"https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv\"\n\n)\n\ndf1 = df.PassengerId.s_apply_each(\n\n    expression=\"str(x) + str(y)\", # use always x/y in your expression\n\n    exception_value=pd.NA,\n\n    diagonal_value=pd.NA,\n\n    print_exception=True,\n\n)\n\nprint(df1)\n\n      0     1     2     3     4    ...     886     887     888     889     890\n\n0    <NA>    12    13    14    15  ...    1887    1888    1889    1890    1891\n\n1      21  <NA>    23    24    25  ...    2887    2888    2889    2890    2891\n\n2      31    32  <NA>    34    35  ...    3887    3888    3889    3890    3891\n\n3      41    42    43  <NA>    45  ...    4887    4888    4889    4890    4891\n\n4      51    52    53    54  <NA>  ...    5887    5888    5889    5890    5891\n\n..    ...   ...   ...   ...   ...  ...     ...     ...     ...     ...     ...\n\n886  8871  8872  8873  8874  8875  ...    <NA>  887888  887889  887890  887891\n\n887  8881  8882  8883  8884  8885  ...  888887    <NA>  888889  888890  888891\n\n888  8891  8892  8893  8894  8895  ...  889887  889888    <NA>  889890  889891\n\n889  8901  8902  8903  8904  8905  ...  890887  890888  890889    <NA>  890891\n\n890  8911  8912  8913  8914  8915  ...  891887  891888  891889  891890    <NA>\n\n[891 rows x 891 columns]\n\n\n\n# If you use a non-built-in function, you have to pass it as an argument, and use it as \"func\" in your expression\n\n# An example using shapely (merging different polygons)\n\n\n\nfrom shapely.ops import unary_union\n\nimport shapely\n\npolyshape = []\n\nfor k in range(10):\n\n    xmin = k * 10 + 5\n\n    ymin = k * 10 + 5\n\n    xmax = k * 20 + 10\n\n    ymax = k * 20 + 10\n\n    coordsalls = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax], [xmin, ymin]]\n\n    po = shapely.geometry.Polygon(coordsalls)\n\n    polyshape.append(po)\n\ndf2 = pd.DataFrame(polyshape)\n\n\n\ndf2\n\nOut[7]: \n\n                                                   0\n\n0            POLYGON ((5 5, 10 5, 10 10, 5 10, 5 5))\n\n1      POLYGON ((15 15, 30 15, 30 30, 15 30, 15 15))\n\n2      POLYGON ((25 25, 50 25, 50 50, 25 50, 25 25))\n\n3      POLYGON ((35 35, 70 35, 70 70, 35 70, 35 35))\n\n4      POLYGON ((45 45, 90 45, 90 90, 45 90, 45 45))\n\n5  POLYGON ((55 55, 110 55, 110 110, 55 110, 55 55))\n\n6  POLYGON ((65 65, 130 65, 130 130, 65 130, 65 65))\n\n7  POLYGON ((75 75, 150 75, 150 150, 75 150, 75 75))\n\n8  POLYGON ((85 85, 170 85, 170 170, 85 170, 85 85))\n\n9  POLYGON ((95 95, 190 95, 190 190, 95 190, 95 95))\n\n\n\n\n\ndf1 = df2[0].s_apply_each(\n\n    expression=\"func([x,y]) if x.intersects(y) else x\", # use always x/y in your expression\n\n    func=unary_union,\n\n    exception_value=pd.NA,\n\n    diagonal_value=pd.NA,\n\n    print_exception=True,\n\n    ignore_exceptions=True\n\n)\n\n\n\nOut[8]: \n\n                                                   0  ...                                                  9\n\n0                                               <NA>  ...            POLYGON ((5 5, 10 5, 10 10, 5 10, 5 5))\n\n1      POLYGON ((15 15, 30 15, 30 30, 15 30, 15 15))  ...      POLYGON ((15 15, 30 15, 30 30, 15 30, 15 15))\n\n2      POLYGON ((25 25, 50 25, 50 50, 25 50, 25 25))  ...      POLYGON ((25 25, 50 25, 50 50, 25 50, 25 25))\n\n3      POLYGON ((35 35, 70 35, 70 70, 35 70, 35 35))  ...      POLYGON ((35 35, 70 35, 70 70, 35 70, 35 35))\n\n4      POLYGON ((45 45, 90 45, 90 90, 45 90, 45 45))  ...      POLYGON ((45 45, 90 45, 90 90, 45 90, 45 45))\n\n5  POLYGON ((55 55, 110 55, 110 110, 55 110, 55 55))  ...  POLYGON ((110 55, 55 55, 55 110, 95 110, 95 19...\n\n6  POLYGON ((65 65, 130 65, 130 130, 65 130, 65 65))  ...  POLYGON ((130 65, 65 65, 65 130, 95 130, 95 19...\n\n7  POLYGON ((75 75, 150 75, 150 150, 75 150, 75 75))  ...  POLYGON ((150 75, 75 75, 75 150, 95 150, 95 19...\n\n8  POLYGON ((85 85, 170 85, 170 170, 85 170, 85 85))  ...  POLYGON ((170 85, 85 85, 85 170, 95 170, 95 19...\n\n9  POLYGON ((95 95, 190 95, 190 190, 95 190, 95 95))  ...                                               <NA>\n\n[10 rows x 10 columns]\n\n\n\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Apply each value in a column against the whole column",
    "version": "0.12",
    "split_keywords": [
        "pandas",
        "dataframe",
        "apply"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "d28d6302540fa36056f5d43f4272487b",
                "sha256": "cfb2f321952a6a7d3df1b980b215cbc059fddd5b1eab8cebf9c34decde82b6b4"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_apply_against_all-0.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d28d6302540fa36056f5d43f4272487b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7326,
            "upload_time": "2022-12-19T16:14:11",
            "upload_time_iso_8601": "2022-12-19T16:14:11.904104Z",
            "url": "https://files.pythonhosted.org/packages/99/4e/1ba3d80836ef13200ea08f3827a11a52a9df1cb2c217634e6c7fd5578a9a/a_pandas_ex_apply_against_all-0.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "96dfd9841e38ac0659693f8905894023",
                "sha256": "6af813a4084d8df1e1e7c5cafa36caec92d92a42cedec87385d710321b61e023"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_apply_against_all-0.12.tar.gz",
            "has_sig": false,
            "md5_digest": "96dfd9841e38ac0659693f8905894023",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5638,
            "upload_time": "2022-12-19T16:14:13",
            "upload_time_iso_8601": "2022-12-19T16:14:13.372843Z",
            "url": "https://files.pythonhosted.org/packages/da/48/e79742f53c401daf82902884f5a3bbd22fb6bf35943031e7ebcdb4f6e285/a_pandas_ex_apply_against_all-0.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-19 16:14:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hansalemaos",
    "github_project": "a_pandas_ex_apply_against_all",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pandas",
            "specs": []
        }
    ],
    "lcname": "a-pandas-ex-apply-against-all"
}
        
Elapsed time: 0.02250s