## Installation
```python
pip install a-pandas-ex-df-to-string
```
## Usage
```python
from a_pandas_ex_df_to_string import pd_add_to_string
pd_add_to_string()
import pandas as pd
from random import choice
csvtests = [
"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_long.csv",
"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_no2.csv",
"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_no2_long.csv",
"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_parameters.csv",
"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_pm25_long.csv",
"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_stations.csv",
"https://github.com/pandas-dev/pandas/raw/main/doc/data/baseball.csv",
"https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv",
]
csvfile = choice(csvtests)
df = pd.read_csv(csvfile)
print(df)
print(df.dtypes)
df2=df.ds_to_string()
print(df2)
print(df2.dtypes)
id description name
0 bc Black Carbon BC
1 co Carbon Monoxide CO
2 no2 Nitrogen Dioxide NO2
3 o3 Ozone O3
4 pm10 Particulate matter less than 10 micrometers in... PM10
5 pm25 Particulate matter less than 2.5 micrometers i... PM2.5
6 so2 Sulfur Dioxide SO2
id object
description object
name object
dtype: object
id description name
0 bc Black Carbon BC
1 co Carbon Monoxide CO
2 no2 Nitrogen Dioxide NO2
3 o3 Ozone O3
4 pm10 Particulate matter less than 10 micrometers in... PM10
5 pm25 Particulate matter less than 2.5 micrometers i... PM2.5
6 so2 Sulfur Dioxide SO2
id string
description string
name string
dtype: object
```
Raw data
{
"_id": null,
"home_page": "https://github.com/hansalemaos/a_pandas_ex_df_to_string",
"name": "a-pandas-ex-df-to-string",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "pandas,numpy,dataframe,series",
"author": "Johannes Fischer",
"author_email": "aulasparticularesdealemaosp@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/88/57/e14e7424ef0c597646f999006a3843361cac1aa859b8f1f86b71ef2f8c53/a_pandas_ex_df_to_string-0.14.tar.gz",
"platform": null,
"description": "## Installation\r\n\r\n```python\r\npip install a-pandas-ex-df-to-string\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nfrom a_pandas_ex_df_to_string import pd_add_to_string\r\npd_add_to_string()\r\nimport pandas as pd\r\nfrom random import choice\r\ncsvtests = [\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_long.csv\",\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_no2.csv\",\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_no2_long.csv\",\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_parameters.csv\",\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_pm25_long.csv\",\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/air_quality_stations.csv\",\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/baseball.csv\",\r\n \"https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv\",\r\n]\r\ncsvfile = choice(csvtests)\r\ndf = pd.read_csv(csvfile)\r\nprint(df)\r\nprint(df.dtypes)\r\ndf2=df.ds_to_string()\r\nprint(df2)\r\nprint(df2.dtypes)\r\n\r\n id description name\r\n0 bc Black Carbon BC\r\n1 co Carbon Monoxide CO\r\n2 no2 Nitrogen Dioxide NO2\r\n3 o3 Ozone O3\r\n4 pm10 Particulate matter less than 10 micrometers in... PM10\r\n5 pm25 Particulate matter less than 2.5 micrometers i... PM2.5\r\n6 so2 Sulfur Dioxide SO2\r\nid object\r\ndescription object\r\nname object\r\ndtype: object\r\n id description name\r\n0 bc Black Carbon BC\r\n1 co Carbon Monoxide CO\r\n2 no2 Nitrogen Dioxide NO2\r\n3 o3 Ozone O3\r\n4 pm10 Particulate matter less than 10 micrometers in... PM10\r\n5 pm25 Particulate matter less than 2.5 micrometers i... PM2.5\r\n6 so2 Sulfur Dioxide SO2\r\nid string\r\ndescription string\r\nname string\r\ndtype: object\r\n\r\n\r\n\r\n\r\n```\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Just a function to convert everything in Pandas DataFrames / Series to string",
"version": "0.14",
"project_urls": {
"Homepage": "https://github.com/hansalemaos/a_pandas_ex_df_to_string"
},
"split_keywords": [
"pandas",
"numpy",
"dataframe",
"series"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5fc9d6b86f15cfa4cb9c910f62968c3fc9958517ede786b0a99377d2741d3585",
"md5": "5ced908c3989ac1b3314011c1a56c23d",
"sha256": "7d3da187293e30a345967458420d259810b7fa17b06f294e586a6b5b108ed2f7"
},
"downloads": -1,
"filename": "a_pandas_ex_df_to_string-0.14-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5ced908c3989ac1b3314011c1a56c23d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 6530,
"upload_time": "2023-04-28T22:59:34",
"upload_time_iso_8601": "2023-04-28T22:59:34.793948Z",
"url": "https://files.pythonhosted.org/packages/5f/c9/d6b86f15cfa4cb9c910f62968c3fc9958517ede786b0a99377d2741d3585/a_pandas_ex_df_to_string-0.14-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8857e14e7424ef0c597646f999006a3843361cac1aa859b8f1f86b71ef2f8c53",
"md5": "bef1dfbcdecc0214446eed70f6b7732d",
"sha256": "479ca528de47c650aeeb33903c94e0755c88cf1cb95e8b5531972b690caad677"
},
"downloads": -1,
"filename": "a_pandas_ex_df_to_string-0.14.tar.gz",
"has_sig": false,
"md5_digest": "bef1dfbcdecc0214446eed70f6b7732d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4515,
"upload_time": "2023-04-28T22:59:37",
"upload_time_iso_8601": "2023-04-28T22:59:37.474676Z",
"url": "https://files.pythonhosted.org/packages/88/57/e14e7424ef0c597646f999006a3843361cac1aa859b8f1f86b71ef2f8c53/a_pandas_ex_df_to_string-0.14.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-28 22:59:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hansalemaos",
"github_project": "a_pandas_ex_df_to_string",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "a-pandas-ex-df-to-string"
}