a-pandas-ex-duplicates-to-df


Namea-pandas-ex-duplicates-to-df JSON
Version 0.10 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/a_pandas_ex_duplicates_to_df
SummaryCreates a DataFrame/Series from duplicates
upload_time2022-12-04 07:43:42
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords pandas dataframe series duplicates
VCS
bugtrack_url
requirements pandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
### Creates a DataFrame/Series from duplicates 



```python

pip install a-pandas-ex-duplicates-to-df



from a_pandas_ex_duplicates_to_df import pd_add_duplicates_to_df

import pandas as pd

pd_add_duplicates_to_df()

df = pd.read_csv("https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv")

df2 = pd.read_csv("https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv")[

    :50

]

df = pd.concat([df, df2], ignore_index=True)

dupl = df.ds_get_duplicates()





dupl

Out[5]: 

    PassengerId  Survived  Pclass  ... Cabin Embarked  DUPLICATEINDEX

0             1         0       3  ...   NaN        S        (0, 891)

1             1         0       3  ...   NaN        S        (0, 891)

2            10         1       2  ...   NaN        C        (9, 900)

3            10         1       2  ...   NaN        C        (9, 900)

4            11         1       3  ...    G6        S       (10, 901)

..          ...       ...     ...  ...   ...      ...             ...

95            7         0       1  ...   E46        S        (6, 897)

96            8         0       3  ...   NaN        S        (7, 898)

97            8         0       3  ...   NaN        S        (7, 898)

98            9         1       3  ...   NaN        S        (8, 899)

99            9         1       3  ...   NaN        S        (8, 899)

[100 rows x 13 columns]





dupl2=df.ds_get_duplicates(subset=['Survived'])

dupl2

Out[7]: 

     PassengerId  ...                                     DUPLICATEINDEX

0              1  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...

1              5  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...

2              6  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...

3              7  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...

4              8  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...

..           ...  ...                                                ...

936           37  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...

937           40  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...

938           44  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...

939           45  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...

940           48  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...

[941 rows x 13 columns]





df.Embarked.ds_get_duplicates()



    Embarked                                     DUPLICATEINDEX

0        NaN                                          (61, 829)

1        NaN                                          (61, 829)

2          C  (1, 9, 19, 26, 30, 31, 34, 36, 39, 42, 43, 48,...

3          C  (1, 9, 19, 26, 30, 31, 34, 36, 39, 42, 43, 48,...

4          C  (1, 9, 19, 26, 30, 31, 34, 36, 39, 42, 43, 48,...

..       ...                                                ...

936        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...

937        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...

938        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...

939        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...

940        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...

[941 rows x 2 columns]



```




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/a_pandas_ex_duplicates_to_df",
    "name": "a-pandas-ex-duplicates-to-df",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pandas,DataFrame,Series,duplicates",
    "author": "Johannes Fischer",
    "author_email": "<aulasparticularesdealemaosp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/e6/d9/273645c58ffbe7223c8c76e93ee447672ebaf74c7dce8c2a1bf4f64ca1d2/a_pandas_ex_duplicates_to_df-0.10.tar.gz",
    "platform": null,
    "description": "\n### Creates a DataFrame/Series from duplicates \n\n\n\n```python\n\npip install a-pandas-ex-duplicates-to-df\n\n\n\nfrom a_pandas_ex_duplicates_to_df import pd_add_duplicates_to_df\n\nimport pandas as pd\n\npd_add_duplicates_to_df()\n\ndf = pd.read_csv(\"https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv\")\n\ndf2 = pd.read_csv(\"https://github.com/pandas-dev/pandas/raw/main/doc/data/titanic.csv\")[\n\n    :50\n\n]\n\ndf = pd.concat([df, df2], ignore_index=True)\n\ndupl = df.ds_get_duplicates()\n\n\n\n\n\ndupl\n\nOut[5]: \n\n    PassengerId  Survived  Pclass  ... Cabin Embarked  DUPLICATEINDEX\n\n0             1         0       3  ...   NaN        S        (0, 891)\n\n1             1         0       3  ...   NaN        S        (0, 891)\n\n2            10         1       2  ...   NaN        C        (9, 900)\n\n3            10         1       2  ...   NaN        C        (9, 900)\n\n4            11         1       3  ...    G6        S       (10, 901)\n\n..          ...       ...     ...  ...   ...      ...             ...\n\n95            7         0       1  ...   E46        S        (6, 897)\n\n96            8         0       3  ...   NaN        S        (7, 898)\n\n97            8         0       3  ...   NaN        S        (7, 898)\n\n98            9         1       3  ...   NaN        S        (8, 899)\n\n99            9         1       3  ...   NaN        S        (8, 899)\n\n[100 rows x 13 columns]\n\n\n\n\n\ndupl2=df.ds_get_duplicates(subset=['Survived'])\n\ndupl2\n\nOut[7]: \n\n     PassengerId  ...                                     DUPLICATEINDEX\n\n0              1  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...\n\n1              5  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...\n\n2              6  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...\n\n3              7  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...\n\n4              8  ...  (0, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20, 24, 26...\n\n..           ...  ...                                                ...\n\n936           37  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...\n\n937           40  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...\n\n938           44  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...\n\n939           45  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...\n\n940           48  ...  (1, 2, 3, 8, 9, 10, 11, 15, 17, 19, 21, 22, 23...\n\n[941 rows x 13 columns]\n\n\n\n\n\ndf.Embarked.ds_get_duplicates()\n\n\n\n    Embarked                                     DUPLICATEINDEX\n\n0        NaN                                          (61, 829)\n\n1        NaN                                          (61, 829)\n\n2          C  (1, 9, 19, 26, 30, 31, 34, 36, 39, 42, 43, 48,...\n\n3          C  (1, 9, 19, 26, 30, 31, 34, 36, 39, 42, 43, 48,...\n\n4          C  (1, 9, 19, 26, 30, 31, 34, 36, 39, 42, 43, 48,...\n\n..       ...                                                ...\n\n936        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...\n\n937        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...\n\n938        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...\n\n939        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...\n\n940        S  (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...\n\n[941 rows x 2 columns]\n\n\n\n```\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Creates a DataFrame/Series from duplicates",
    "version": "0.10",
    "split_keywords": [
        "pandas",
        "dataframe",
        "series",
        "duplicates"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "269f01f6abfdca7dfaec4ffee57f60ad",
                "sha256": "2dec20ca311c13bda87d690a25879b81938793ac150750037cb401f7f3df1502"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_duplicates_to_df-0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "269f01f6abfdca7dfaec4ffee57f60ad",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6222,
            "upload_time": "2022-12-04T07:43:39",
            "upload_time_iso_8601": "2022-12-04T07:43:39.957859Z",
            "url": "https://files.pythonhosted.org/packages/c0/8f/981bc62bbeacba7dd0c498e1a1386d5e59fe40eb92c1f5bad145738ed61d/a_pandas_ex_duplicates_to_df-0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "19326e7d718451b173af1a6f8ae21cd4",
                "sha256": "10ec9fe3aee744f67a8a1293e9d1740fc7d311e352dcc37069ef1c2dbc4ea9cd"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_duplicates_to_df-0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "19326e7d718451b173af1a6f8ae21cd4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4363,
            "upload_time": "2022-12-04T07:43:42",
            "upload_time_iso_8601": "2022-12-04T07:43:42.027610Z",
            "url": "https://files.pythonhosted.org/packages/e6/d9/273645c58ffbe7223c8c76e93ee447672ebaf74c7dce8c2a1bf4f64ca1d2/a_pandas_ex_duplicates_to_df-0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-04 07:43:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hansalemaos",
    "github_project": "a_pandas_ex_duplicates_to_df",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pandas",
            "specs": []
        }
    ],
    "lcname": "a-pandas-ex-duplicates-to-df"
}
        
Elapsed time: 0.02255s