a-pandas-ex-read-sql


Namea-pandas-ex-read-sql JSON
Version 0.11 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/a_pandas_ex_read_sql
SummaryConvert any SQL Database to a Pandas DataFrame
upload_time2023-05-13 18:15:37
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords sql pandas sqlite mysql dataframe
VCS
bugtrack_url
requirements a_pandas_ex_apply_ignore_exceptions a_pandas_ex_less_memory_more_speed check_if_nan pandas sqlparse
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Convert any SQL Database to a Pandas DataFrame


```python
$ pip install a-pandas-ex-read-sql
from a_pandas_ex_read_sql import pd_add_read_sql_file
pd_add_read_sql_file()
import pandas as pd
dict_with_dfs = pd.Q_read_sql(r"F:\msgstorexxxxxxxxxxxxxxxxx.db")
```






### Update 13.5: 

```python
# Added .SQL File Reading Functionality
# To read an .SQL file and obtain the data, you can use the pd.Q_read_sql() function.
# This code reads the specified SQL file (.sql - only INSERT commands) and returns a DataFrame containing the data from the file.
df = pd.Q_read_sql(r"C:\Users\hansc\Downloads\sax\world.sql")

# Reading an SQLite Database File (.db)
# To read an SQLite database file and retrieve the data, you can also use the pd.Q_read_sql() function.
# This code reads the specified SQLite database file (northwind.db) and returns a DataFrame containing the data in a dict of DataFrames.

df2 = pd.Q_read_sql(r"C:\Users\hansc\Downloads\northwind.db")


# To convert all tables in an SQLite database file into a single DataFrame, you can use the pd.Q_db_to_one_df() # function. This code reads the specified SQLite database file (northwind.db), retrieves all the tables, and combines them into a single DataFrame.
df3 = pd.Q_db_to_one_df(path=r"C:\Users\hansc\Downloads\northwind.db")



# Splitting a DataFrame into Grouped DataFrames (Revert the last step)
# To split a DataFrame into multiple DataFrames based on specified columns, you can use the d_split_in_groups() # function. This code splits the DataFrame (df3) into multiple DataFrames based on the "aa_table" column. The result is a dictionary where the keys are group names, and the values are the corresponding split DataFrames.

df4 = df3.d_split_in_groups(columns=["aa_table"])

# To revert the grouped DataFrames back into a single DataFrame (without reading SQL), you can use the pd.Q_groupdict_to_one_df() function. 
# This code takes the dictionary of grouped DataFrames (df4) and combines them into a single DataFrame.
df5 = pd.Q_groupdict_to_one_df(df4)

```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/a_pandas_ex_read_sql",
    "name": "a-pandas-ex-read-sql",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "sql,pandas,SQLite,mysql,DataFrame",
    "author": "Johannes Fischer",
    "author_email": "aulasparticularesdealemaosp@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/20/e5/1184505e7a714b3642e5fe0783afeef0f6f1868fe6b79e7a59e25457b636/a_pandas_ex_read_sql-0.11.tar.gz",
    "platform": null,
    "description": "# Convert any SQL Database to a Pandas DataFrame\r\n\r\n\r\n```python\r\n$ pip install a-pandas-ex-read-sql\r\nfrom a_pandas_ex_read_sql import pd_add_read_sql_file\r\npd_add_read_sql_file()\r\nimport pandas as pd\r\ndict_with_dfs = pd.Q_read_sql(r\"F:\\msgstorexxxxxxxxxxxxxxxxx.db\")\r\n```\r\n\r\n\r\n\r\n\r\n\r\n\r\n### Update 13.5: \r\n\r\n```python\r\n# Added .SQL File Reading Functionality\r\n# To read an .SQL file and obtain the data, you can use the pd.Q_read_sql() function.\r\n# This code reads the specified SQL file (.sql - only INSERT commands) and returns a DataFrame containing the data from the file.\r\ndf = pd.Q_read_sql(r\"C:\\Users\\hansc\\Downloads\\sax\\world.sql\")\r\n\r\n# Reading an SQLite Database File (.db)\r\n# To read an SQLite database file and retrieve the data, you can also use the pd.Q_read_sql() function.\r\n# This code reads the specified SQLite database file (northwind.db) and returns a DataFrame containing the data in a dict of DataFrames.\r\n\r\ndf2 = pd.Q_read_sql(r\"C:\\Users\\hansc\\Downloads\\northwind.db\")\r\n\r\n\r\n# To convert all tables in an SQLite database file into a single DataFrame, you can use the pd.Q_db_to_one_df() # function. This code reads the specified SQLite database file (northwind.db), retrieves all the tables, and combines them into a single DataFrame.\r\ndf3 = pd.Q_db_to_one_df(path=r\"C:\\Users\\hansc\\Downloads\\northwind.db\")\r\n\r\n\r\n\r\n# Splitting a DataFrame into Grouped DataFrames (Revert the last step)\r\n# To split a DataFrame into multiple DataFrames based on specified columns, you can use the d_split_in_groups() # function. This code splits the DataFrame (df3) into multiple DataFrames based on the \"aa_table\" column. The result is a dictionary where the keys are group names, and the values are the corresponding split DataFrames.\r\n\r\ndf4 = df3.d_split_in_groups(columns=[\"aa_table\"])\r\n\r\n# To revert the grouped DataFrames back into a single DataFrame (without reading SQL), you can use the pd.Q_groupdict_to_one_df() function. \r\n# This code takes the dictionary of grouped DataFrames (df4) and combines them into a single DataFrame.\r\ndf5 = pd.Q_groupdict_to_one_df(df4)\r\n\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Convert any SQL Database to a Pandas DataFrame",
    "version": "0.11",
    "project_urls": {
        "Homepage": "https://github.com/hansalemaos/a_pandas_ex_read_sql"
    },
    "split_keywords": [
        "sql",
        "pandas",
        "sqlite",
        "mysql",
        "dataframe"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "78e23eaf709934feec31188f73bb684648f31314569e2376fd351fd62d0a83b8",
                "md5": "04d5c3b9ecca58f130fdb7df15b802bb",
                "sha256": "3988d4f68fa13258fecb2d0cac3834f2e6cb12838074a27a399ea698520bbeb0"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_read_sql-0.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "04d5c3b9ecca58f130fdb7df15b802bb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8128,
            "upload_time": "2023-05-13T18:15:35",
            "upload_time_iso_8601": "2023-05-13T18:15:35.437163Z",
            "url": "https://files.pythonhosted.org/packages/78/e2/3eaf709934feec31188f73bb684648f31314569e2376fd351fd62d0a83b8/a_pandas_ex_read_sql-0.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "20e51184505e7a714b3642e5fe0783afeef0f6f1868fe6b79e7a59e25457b636",
                "md5": "17fd2a707da9132988624349bed10a77",
                "sha256": "233f2e0a7df947135cd4a1e01e0f62034cf3246ae4d646910915a31de27fa58e"
            },
            "downloads": -1,
            "filename": "a_pandas_ex_read_sql-0.11.tar.gz",
            "has_sig": false,
            "md5_digest": "17fd2a707da9132988624349bed10a77",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6435,
            "upload_time": "2023-05-13T18:15:37",
            "upload_time_iso_8601": "2023-05-13T18:15:37.497835Z",
            "url": "https://files.pythonhosted.org/packages/20/e5/1184505e7a714b3642e5fe0783afeef0f6f1868fe6b79e7a59e25457b636/a_pandas_ex_read_sql-0.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-13 18:15:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hansalemaos",
    "github_project": "a_pandas_ex_read_sql",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "a_pandas_ex_apply_ignore_exceptions",
            "specs": []
        },
        {
            "name": "a_pandas_ex_less_memory_more_speed",
            "specs": []
        },
        {
            "name": "check_if_nan",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "sqlparse",
            "specs": []
        }
    ],
    "lcname": "a-pandas-ex-read-sql"
}
        
Elapsed time: 0.09630s