abagentsdk


Nameabagentsdk JSON
Version 0.0.8 PyPI version JSON
download
home_pagehttps://github.com/ABZAgent/abzagentsdk
SummaryThe fastest way to build AI agents using Google Gemini
upload_time2025-10-19 11:16:58
maintainerNone
docs_urlNone
authorAbu Bakar
requires_python>=3.10
licenseMIT
keywords agents gemini google generative ai sdk llm tool calling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ================================
# 🚀 ABZ Agent SDK Quick Start Guide
# ================================

# 1️⃣ Install ABZ Agent SDK
pip install abagentsdk
# or
uv add abagentsdk

# 2️⃣ Create a .env file and add your keys
echo "GEMINI_API_KEY=your_gemini_key_here" >> .env
echo "TAVILY_API_KEY=your_tavily_key_here" >> .env

# 3️⃣ Create a new Python file (app.py)
# ------------------------------------
from dotenv import load_dotenv
load_dotenv()
import os
from abagentsdk import Agent, Memory, function_tool
from tavily import TavilyClient

# Load API keys
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")

# Initialize Tavily client
tavily = TavilyClient(api_key=TAVILY_API_KEY)

# Define a Tavily search tool
@function_tool
def tavily_search(query: str) -> str:
    """Search the web using Tavily."""
    result = tavily.search(query)
    return str(result)

# Create an Agent
agent = Agent(
    name="Research Agent",
    instructions="You are a helpful researcher. Use tavily_search to find information.",
    model="gemini-2.0-flash",
    api_key=GEMINI_API_KEY,
    tools=[tavily_search],
    memory=Memory(),
)

# Run the Agent in a chat loop
while True:
    user_input = input("You: ")
    if user_input.lower() in ["exit", "quit"]:
        break
    response = agent.run(user_input)
    print("Agent:", response.content)

# 4️⃣ Run your agent
python app.py

# ✅ Example
# You: Search for BMW 7 Series
# Agent: The BMW 7 Series is a luxury sedan lineup introduced in 1977, featuring advanced comfort and performance technologies.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ABZAgent/abzagentsdk",
    "name": "abagentsdk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "agents, gemini, google generative ai, sdk, llm, tool calling",
    "author": "Abu Bakar",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/12/16/686ac3523a2290afa418af411c4af56df2b5443bfdba093b3bafc6a5efa7/abagentsdk-0.0.8.tar.gz",
    "platform": null,
    "description": "# ================================\r\n# \ud83d\ude80 ABZ Agent SDK Quick Start Guide\r\n# ================================\r\n\r\n# 1\ufe0f\u20e3 Install ABZ Agent SDK\r\npip install abagentsdk\r\n# or\r\nuv add abagentsdk\r\n\r\n# 2\ufe0f\u20e3 Create a .env file and add your keys\r\necho \"GEMINI_API_KEY=your_gemini_key_here\" >> .env\r\necho \"TAVILY_API_KEY=your_tavily_key_here\" >> .env\r\n\r\n# 3\ufe0f\u20e3 Create a new Python file (app.py)\r\n# ------------------------------------\r\nfrom dotenv import load_dotenv\r\nload_dotenv()\r\nimport os\r\nfrom abagentsdk import Agent, Memory, function_tool\r\nfrom tavily import TavilyClient\r\n\r\n# Load API keys\r\nGEMINI_API_KEY = os.getenv(\"GEMINI_API_KEY\")\r\nTAVILY_API_KEY = os.getenv(\"TAVILY_API_KEY\")\r\n\r\n# Initialize Tavily client\r\ntavily = TavilyClient(api_key=TAVILY_API_KEY)\r\n\r\n# Define a Tavily search tool\r\n@function_tool\r\ndef tavily_search(query: str) -> str:\r\n    \"\"\"Search the web using Tavily.\"\"\"\r\n    result = tavily.search(query)\r\n    return str(result)\r\n\r\n# Create an Agent\r\nagent = Agent(\r\n    name=\"Research Agent\",\r\n    instructions=\"You are a helpful researcher. Use tavily_search to find information.\",\r\n    model=\"gemini-2.0-flash\",\r\n    api_key=GEMINI_API_KEY,\r\n    tools=[tavily_search],\r\n    memory=Memory(),\r\n)\r\n\r\n# Run the Agent in a chat loop\r\nwhile True:\r\n    user_input = input(\"You: \")\r\n    if user_input.lower() in [\"exit\", \"quit\"]:\r\n        break\r\n    response = agent.run(user_input)\r\n    print(\"Agent:\", response.content)\r\n\r\n# 4\ufe0f\u20e3 Run your agent\r\npython app.py\r\n\r\n# \u2705 Example\r\n# You: Search for BMW 7 Series\r\n# Agent: The BMW 7 Series is a luxury sedan lineup introduced in 1977, featuring advanced comfort and performance technologies.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The fastest way to build AI agents using Google Gemini",
    "version": "0.0.8",
    "project_urls": {
        "Documentation": "https://abzagent.vercel.app",
        "Homepage": "https://github.com/ABZAgent/abzagentsdk",
        "Issues": "https://github.com/ABZAgent/abzagentsdk/issues"
    },
    "split_keywords": [
        "agents",
        " gemini",
        " google generative ai",
        " sdk",
        " llm",
        " tool calling"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8e48d203916be703a3880fb9b923bbdfba8687be56d3ca6cf55d20c8733f26da",
                "md5": "a69b580e695e40d2b9442306f11a1760",
                "sha256": "279d5eeaadcd4f989d9015af09bf4779bcd18f6c42c08961b8a2ca595cc806de"
            },
            "downloads": -1,
            "filename": "abagentsdk-0.0.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a69b580e695e40d2b9442306f11a1760",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 26503,
            "upload_time": "2025-10-19T11:16:57",
            "upload_time_iso_8601": "2025-10-19T11:16:57.309394Z",
            "url": "https://files.pythonhosted.org/packages/8e/48/d203916be703a3880fb9b923bbdfba8687be56d3ca6cf55d20c8733f26da/abagentsdk-0.0.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1216686ac3523a2290afa418af411c4af56df2b5443bfdba093b3bafc6a5efa7",
                "md5": "ab79d7cd18a186ba802e4f301f89dc3d",
                "sha256": "3bb77c06829091c11a487188318801cf71180de213d5ef82d547e6ce6a76d965"
            },
            "downloads": -1,
            "filename": "abagentsdk-0.0.8.tar.gz",
            "has_sig": false,
            "md5_digest": "ab79d7cd18a186ba802e4f301f89dc3d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 20899,
            "upload_time": "2025-10-19T11:16:58",
            "upload_time_iso_8601": "2025-10-19T11:16:58.498276Z",
            "url": "https://files.pythonhosted.org/packages/12/16/686ac3523a2290afa418af411c4af56df2b5443bfdba093b3bafc6a5efa7/abagentsdk-0.0.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-19 11:16:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ABZAgent",
    "github_project": "abzagentsdk",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "abagentsdk"
}
        
Elapsed time: 1.71318s