# ================================
# 🚀 ABZ Agent SDK Quick Start Guide
# ================================
# 1️⃣ Install ABZ Agent SDK
pip install abagentsdk
# or
uv add abagentsdk
# 2️⃣ Create a .env file and add your keys
echo "GEMINI_API_KEY=your_gemini_key_here" >> .env
echo "TAVILY_API_KEY=your_tavily_key_here" >> .env
# 3️⃣ Create a new Python file (app.py)
# ------------------------------------
from dotenv import load_dotenv
load_dotenv()
import os
from abagentsdk import Agent, Memory, function_tool
from tavily import TavilyClient
# Load API keys
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
# Initialize Tavily client
tavily = TavilyClient(api_key=TAVILY_API_KEY)
# Define a Tavily search tool
@function_tool
def tavily_search(query: str) -> str:
"""Search the web using Tavily."""
result = tavily.search(query)
return str(result)
# Create an Agent
agent = Agent(
name="Research Agent",
instructions="You are a helpful researcher. Use tavily_search to find information.",
model="gemini-2.0-flash",
api_key=GEMINI_API_KEY,
tools=[tavily_search],
memory=Memory(),
)
# Run the Agent in a chat loop
while True:
user_input = input("You: ")
if user_input.lower() in ["exit", "quit"]:
break
response = agent.run(user_input)
print("Agent:", response.content)
# 4️⃣ Run your agent
python app.py
# ✅ Example
# You: Search for BMW 7 Series
# Agent: The BMW 7 Series is a luxury sedan lineup introduced in 1977, featuring advanced comfort and performance technologies.
Raw data
{
"_id": null,
"home_page": "https://github.com/ABZAgent/abzagentsdk",
"name": "abagentsdk",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "agents, gemini, google generative ai, sdk, llm, tool calling",
"author": "Abu Bakar",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/12/16/686ac3523a2290afa418af411c4af56df2b5443bfdba093b3bafc6a5efa7/abagentsdk-0.0.8.tar.gz",
"platform": null,
"description": "# ================================\r\n# \ud83d\ude80 ABZ Agent SDK Quick Start Guide\r\n# ================================\r\n\r\n# 1\ufe0f\u20e3 Install ABZ Agent SDK\r\npip install abagentsdk\r\n# or\r\nuv add abagentsdk\r\n\r\n# 2\ufe0f\u20e3 Create a .env file and add your keys\r\necho \"GEMINI_API_KEY=your_gemini_key_here\" >> .env\r\necho \"TAVILY_API_KEY=your_tavily_key_here\" >> .env\r\n\r\n# 3\ufe0f\u20e3 Create a new Python file (app.py)\r\n# ------------------------------------\r\nfrom dotenv import load_dotenv\r\nload_dotenv()\r\nimport os\r\nfrom abagentsdk import Agent, Memory, function_tool\r\nfrom tavily import TavilyClient\r\n\r\n# Load API keys\r\nGEMINI_API_KEY = os.getenv(\"GEMINI_API_KEY\")\r\nTAVILY_API_KEY = os.getenv(\"TAVILY_API_KEY\")\r\n\r\n# Initialize Tavily client\r\ntavily = TavilyClient(api_key=TAVILY_API_KEY)\r\n\r\n# Define a Tavily search tool\r\n@function_tool\r\ndef tavily_search(query: str) -> str:\r\n \"\"\"Search the web using Tavily.\"\"\"\r\n result = tavily.search(query)\r\n return str(result)\r\n\r\n# Create an Agent\r\nagent = Agent(\r\n name=\"Research Agent\",\r\n instructions=\"You are a helpful researcher. Use tavily_search to find information.\",\r\n model=\"gemini-2.0-flash\",\r\n api_key=GEMINI_API_KEY,\r\n tools=[tavily_search],\r\n memory=Memory(),\r\n)\r\n\r\n# Run the Agent in a chat loop\r\nwhile True:\r\n user_input = input(\"You: \")\r\n if user_input.lower() in [\"exit\", \"quit\"]:\r\n break\r\n response = agent.run(user_input)\r\n print(\"Agent:\", response.content)\r\n\r\n# 4\ufe0f\u20e3 Run your agent\r\npython app.py\r\n\r\n# \u2705 Example\r\n# You: Search for BMW 7 Series\r\n# Agent: The BMW 7 Series is a luxury sedan lineup introduced in 1977, featuring advanced comfort and performance technologies.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "The fastest way to build AI agents using Google Gemini",
"version": "0.0.8",
"project_urls": {
"Documentation": "https://abzagent.vercel.app",
"Homepage": "https://github.com/ABZAgent/abzagentsdk",
"Issues": "https://github.com/ABZAgent/abzagentsdk/issues"
},
"split_keywords": [
"agents",
" gemini",
" google generative ai",
" sdk",
" llm",
" tool calling"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "8e48d203916be703a3880fb9b923bbdfba8687be56d3ca6cf55d20c8733f26da",
"md5": "a69b580e695e40d2b9442306f11a1760",
"sha256": "279d5eeaadcd4f989d9015af09bf4779bcd18f6c42c08961b8a2ca595cc806de"
},
"downloads": -1,
"filename": "abagentsdk-0.0.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a69b580e695e40d2b9442306f11a1760",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 26503,
"upload_time": "2025-10-19T11:16:57",
"upload_time_iso_8601": "2025-10-19T11:16:57.309394Z",
"url": "https://files.pythonhosted.org/packages/8e/48/d203916be703a3880fb9b923bbdfba8687be56d3ca6cf55d20c8733f26da/abagentsdk-0.0.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1216686ac3523a2290afa418af411c4af56df2b5443bfdba093b3bafc6a5efa7",
"md5": "ab79d7cd18a186ba802e4f301f89dc3d",
"sha256": "3bb77c06829091c11a487188318801cf71180de213d5ef82d547e6ce6a76d965"
},
"downloads": -1,
"filename": "abagentsdk-0.0.8.tar.gz",
"has_sig": false,
"md5_digest": "ab79d7cd18a186ba802e4f301f89dc3d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 20899,
"upload_time": "2025-10-19T11:16:58",
"upload_time_iso_8601": "2025-10-19T11:16:58.498276Z",
"url": "https://files.pythonhosted.org/packages/12/16/686ac3523a2290afa418af411c4af56df2b5443bfdba093b3bafc6a5efa7/abagentsdk-0.0.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-19 11:16:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ABZAgent",
"github_project": "abzagentsdk",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "abagentsdk"
}