abc-analysis


Nameabc-analysis JSON
Version 0.1.23 PyPI version JSON
download
home_pageNone
SummaryABC analysis with automated limit detection
upload_time2024-06-24 07:39:09
maintainerNone
docs_urlNone
authorViessmann
requires_pythonNone
licenseGNU General Public License v3 (GPLv3)
keywords abc-analysis abc_analysis viessmann
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            ABC analysis
============

Performs and visualizes an ABC analysis with automated limit detection. 

This package is a Python implementation of the R package `ABCanalysis <https://CRAN.R-project.org/package=ABCanalysis>`_.

The package is based on "Computed ABC Analysis for rational Selection of most informative Variables in multivariate Data", PLoS One. Ultsch. A., Lotsch J. (2015) `doi:10.1371/journal.pone.0129767 <https://doi.org/10.1371/journal.pone.0129767>`_.

Basic Usage
^^^^^^^^^^^

.. code-block:: python

    from abc_analysis import abc_analysis, abc_plot
    
    # Perform an ABC analysis on a numeric vector (without plotting)
    dctAnalysis = abc_analysis([1, 15, 25, 17, 2, 3, 5, 6, 2, 3, 22])
    
    # Perform an ABC analysis with plotting
    dctAnalysis = abc_analysis([1, 15, 25, 17, 2, 3, 5, 6, 2, 3, 22], True)
    
    # Plot saved results of an ABC analysis
    abc_plot(dctAnalysis)



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "abc-analysis",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "abc-analysis abc_analysis Viessmann",
    "author": "Viessmann",
    "author_email": "ghlt@viessmann.com",
    "download_url": "https://files.pythonhosted.org/packages/f5/67/615f2cb9ab93de36b827315c882b6bbd4311b7a99ec969d0fddc9ca6cd4a/abc_analysis-0.1.23.tar.gz",
    "platform": null,
    "description": "ABC analysis\n============\n\nPerforms and visualizes an ABC analysis with automated limit detection. \n\nThis package is a Python implementation of the R package `ABCanalysis <https://CRAN.R-project.org/package=ABCanalysis>`_.\n\nThe package is based on \"Computed ABC Analysis for rational Selection of most informative Variables in multivariate Data\", PLoS One. Ultsch. A., Lotsch J. (2015) `doi:10.1371/journal.pone.0129767 <https://doi.org/10.1371/journal.pone.0129767>`_.\n\nBasic Usage\n^^^^^^^^^^^\n\n.. code-block:: python\n\n    from abc_analysis import abc_analysis, abc_plot\n    \n    # Perform an ABC analysis on a numeric vector (without plotting)\n    dctAnalysis = abc_analysis([1, 15, 25, 17, 2, 3, 5, 6, 2, 3, 22])\n    \n    # Perform an ABC analysis with plotting\n    dctAnalysis = abc_analysis([1, 15, 25, 17, 2, 3, 5, 6, 2, 3, 22], True)\n    \n    # Plot saved results of an ABC analysis\n    abc_plot(dctAnalysis)\n\n\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3 (GPLv3)",
    "summary": "ABC analysis with automated limit detection",
    "version": "0.1.23",
    "project_urls": {
        "Download": "https://github.com/viessmann/abc_analysis/archive/v0.1.22.tar.gz",
        "Source": "https://github.com/viessmann/abc_analysis",
        "Viessmann": "https://www.linkedin.com/company/viessmann/"
    },
    "split_keywords": [
        "abc-analysis",
        "abc_analysis",
        "viessmann"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "25e54da698e43dbc3346a93c1df40ca2ba1514660d1872fb10b773f4c78cc729",
                "md5": "fc79c62e386b1bffecfab45895938ed1",
                "sha256": "bdfd80696f935d572dde84e32cec6b691ddf416f5a9a0557271acffadef41c59"
            },
            "downloads": -1,
            "filename": "abc_analysis-0.1.23-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fc79c62e386b1bffecfab45895938ed1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17871,
            "upload_time": "2024-06-24T07:39:08",
            "upload_time_iso_8601": "2024-06-24T07:39:08.378102Z",
            "url": "https://files.pythonhosted.org/packages/25/e5/4da698e43dbc3346a93c1df40ca2ba1514660d1872fb10b773f4c78cc729/abc_analysis-0.1.23-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f567615f2cb9ab93de36b827315c882b6bbd4311b7a99ec969d0fddc9ca6cd4a",
                "md5": "88d64cdeb6d57370675e029d4297f4a0",
                "sha256": "7b986fcaa2b06180d1a32ff6906dbd0fd0169771cae3d9279eeb67c7d82705e2"
            },
            "downloads": -1,
            "filename": "abc_analysis-0.1.23.tar.gz",
            "has_sig": false,
            "md5_digest": "88d64cdeb6d57370675e029d4297f4a0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 53331,
            "upload_time": "2024-06-24T07:39:09",
            "upload_time_iso_8601": "2024-06-24T07:39:09.904542Z",
            "url": "https://files.pythonhosted.org/packages/f5/67/615f2cb9ab93de36b827315c882b6bbd4311b7a99ec969d0fddc9ca6cd4a/abc_analysis-0.1.23.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-24 07:39:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "viessmann",
    "github_project": "abc_analysis",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": false,
    "lcname": "abc-analysis"
}
        
Elapsed time: 0.24098s