aceflow-mcp-server


Nameaceflow-mcp-server JSON
Version 2.1.1 PyPI version JSON
download
home_pageNone
SummaryAceFlow MCP Server - AI-协作增强版,支持双向AI-MCP数据交换的智能开发工作流服务器,支持HTTP和stdio传输模式
upload_time2025-09-14 11:25:03
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords mcp model-context-protocol workflow ai-collaboration ai-tools dual-direction intelligent-workflow claude-code cursor
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AceFlow MCP Server

AI-driven workflow management through Model Context Protocol.

## 📁 Project Structure

```
aceflow-mcp-server/
├── aceflow_mcp_server/          # Core package directory
│   ├── core/                    # Core functionality modules
│   ├── main.py                  # Main entry point
│   ├── tools.py                 # Tool implementations
│   └── ...
├── tests/                       # Formal test suite
├── examples/                    # Examples and demo code
├── scripts/                     # Build and deployment scripts
│   ├── build/                   # Build-related scripts
│   ├── deploy/                  # Deployment scripts
│   └── dev/                     # Development tools
├── docs/                        # Documentation
│   ├── user-guide/              # User guides
│   ├── developer-guide/         # Developer guides
│   └── project/                 # Project documentation
├── dev-tests/                   # Development tests and experiments
└── pyproject.toml               # Project configuration
```

## Overview

AceFlow MCP Server provides structured software development workflows through the Model Context Protocol (MCP), enabling AI clients like Kiro, Cursor, and Claude to manage projects with standardized processes.

## Features

### 🛠️ MCP Tools
- **aceflow_init**: Initialize projects with different workflow modes
- **aceflow_stage**: Manage project stages and workflow progression  
- **aceflow_validate**: Validate project compliance and quality
- **aceflow_template**: Manage workflow templates

### 📊 MCP Resources
- **aceflow://project/state**: Current project state and progress
- **aceflow://workflow/config**: Workflow configuration and settings
- **aceflow://stage/guide/{stage}**: Stage-specific guidance and instructions

### 🤖 MCP Prompts
- **workflow_assistant**: Context-aware workflow guidance
- **stage_guide**: Stage-specific assistance and best practices

## Quick Start

### Installation

```bash
# Method 1: Install via uvx (recommended for end users)
uvx aceflow-mcp-server

# Method 2: Install via pip (traditional method)
pip install aceflow-mcp-server

# Method 3: Install with optional features
pip install aceflow-mcp-server[performance,monitoring]
```

### MCP Client Configuration

#### For uvx installation:
```json
{
  "mcpServers": {
    "aceflow": {
      "command": "uvx",
      "args": ["aceflow-mcp-server@latest"],
      "env": {
        "ACEFLOW_LOG_LEVEL": "INFO"
      }
    }
  }
}
```

#### For pip installation:
```json
{
  "mcpServers": {
    "aceflow": {
      "command": "aceflow-mcp-server",
      "args": [],
      "env": {
        "ACEFLOW_LOG_LEVEL": "INFO"
      }
    }
  }
}
```

### Usage Example

```
User: "I want to start a new AI project with standard workflow"

AI: I'll help you initialize a new project using AceFlow.

[Uses aceflow_init tool]
✅ Project initialized successfully in standard mode!

Current status:
- Project: ai-project
- Mode: STANDARD
- Stage: user_stories (0% complete)

Ready to begin with user story analysis. Would you like guidance for this stage?
```

## Workflow Modes

### Minimal Mode
Fast prototyping and concept validation
- 3 stages: Implementation → Test → Demo
- Ideal for MVPs and quick experiments

### Standard Mode  
Traditional software development workflow
- 8 stages: User Stories → Task Breakdown → Test Design → Implementation → Unit Test → Integration Test → Code Review → Demo
- Balanced approach for most projects

### Complete Mode
Enterprise-grade development process
- 12 stages: Full requirements analysis through security review
- Comprehensive quality gates and documentation

### Smart Mode
AI-enhanced adaptive workflow
- 10 stages with intelligent adaptation
- Dynamic complexity assessment and optimization

## Architecture

```
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   AI Client     │    │  MCP Server     │    │  AceFlow Core   │
│  (Kiro/Cursor)  │◄──►│   (FastMCP)     │◄──►│    Engine       │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                              │
                              ▼
                       ┌─────────────────┐
                       │  File System    │
                       │ (.aceflow/...)  │
                       └─────────────────┘
```

## Development

### Setup

```bash
# Clone repository
git clone https://github.com/aceflow/aceflow-mcp-server
cd aceflow-mcp-server

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Run with coverage
pytest --cov=aceflow_mcp_server
```

### Project Structure

```
aceflow-mcp-server/
├── aceflow_mcp_server/
│   ├── __init__.py
│   ├── server.py          # Main MCP server
│   ├── tools.py           # MCP tools implementation
│   ├── resources.py       # MCP resources
│   ├── prompts.py         # MCP prompts
│   └── core/              # Core functionality
├── tests/                 # Test suite
├── docs/                  # Documentation
└── pyproject.toml         # Project configuration
```

## Contributing

1. Fork the repository
2. Create a feature branch
3. Add tests for new functionality
4. Ensure all tests pass
5. Submit a pull request

## License

MIT License - see LICENSE file for details.

## Support

- **Documentation**: https://docs.aceflow.dev/mcp
- **Issues**: https://github.com/aceflow/aceflow-mcp-server/issues
- **Discussions**: https://github.com/aceflow/aceflow-mcp-server/discussions

---

*Generated by AceFlow v3.0 MCP Server*

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "aceflow-mcp-server",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "AceFlow Team <team@aceflow.dev>",
    "keywords": "mcp, model-context-protocol, workflow, ai-collaboration, ai-tools, dual-direction, intelligent-workflow, claude-code, cursor",
    "author": null,
    "author_email": "AceFlow Team <team@aceflow.dev>",
    "download_url": "https://files.pythonhosted.org/packages/c8/4d/669ff828c278065b61de47baf3bae6990f11a4e656ad1bf70bd7c927c82b/aceflow_mcp_server-2.1.1.tar.gz",
    "platform": null,
    "description": "# AceFlow MCP Server\n\nAI-driven workflow management through Model Context Protocol.\n\n## \ud83d\udcc1 Project Structure\n\n```\naceflow-mcp-server/\n\u251c\u2500\u2500 aceflow_mcp_server/          # Core package directory\n\u2502   \u251c\u2500\u2500 core/                    # Core functionality modules\n\u2502   \u251c\u2500\u2500 main.py                  # Main entry point\n\u2502   \u251c\u2500\u2500 tools.py                 # Tool implementations\n\u2502   \u2514\u2500\u2500 ...\n\u251c\u2500\u2500 tests/                       # Formal test suite\n\u251c\u2500\u2500 examples/                    # Examples and demo code\n\u251c\u2500\u2500 scripts/                     # Build and deployment scripts\n\u2502   \u251c\u2500\u2500 build/                   # Build-related scripts\n\u2502   \u251c\u2500\u2500 deploy/                  # Deployment scripts\n\u2502   \u2514\u2500\u2500 dev/                     # Development tools\n\u251c\u2500\u2500 docs/                        # Documentation\n\u2502   \u251c\u2500\u2500 user-guide/              # User guides\n\u2502   \u251c\u2500\u2500 developer-guide/         # Developer guides\n\u2502   \u2514\u2500\u2500 project/                 # Project documentation\n\u251c\u2500\u2500 dev-tests/                   # Development tests and experiments\n\u2514\u2500\u2500 pyproject.toml               # Project configuration\n```\n\n## Overview\n\nAceFlow MCP Server provides structured software development workflows through the Model Context Protocol (MCP), enabling AI clients like Kiro, Cursor, and Claude to manage projects with standardized processes.\n\n## Features\n\n### \ud83d\udee0\ufe0f MCP Tools\n- **aceflow_init**: Initialize projects with different workflow modes\n- **aceflow_stage**: Manage project stages and workflow progression  \n- **aceflow_validate**: Validate project compliance and quality\n- **aceflow_template**: Manage workflow templates\n\n### \ud83d\udcca MCP Resources\n- **aceflow://project/state**: Current project state and progress\n- **aceflow://workflow/config**: Workflow configuration and settings\n- **aceflow://stage/guide/{stage}**: Stage-specific guidance and instructions\n\n### \ud83e\udd16 MCP Prompts\n- **workflow_assistant**: Context-aware workflow guidance\n- **stage_guide**: Stage-specific assistance and best practices\n\n## Quick Start\n\n### Installation\n\n```bash\n# Method 1: Install via uvx (recommended for end users)\nuvx aceflow-mcp-server\n\n# Method 2: Install via pip (traditional method)\npip install aceflow-mcp-server\n\n# Method 3: Install with optional features\npip install aceflow-mcp-server[performance,monitoring]\n```\n\n### MCP Client Configuration\n\n#### For uvx installation:\n```json\n{\n  \"mcpServers\": {\n    \"aceflow\": {\n      \"command\": \"uvx\",\n      \"args\": [\"aceflow-mcp-server@latest\"],\n      \"env\": {\n        \"ACEFLOW_LOG_LEVEL\": \"INFO\"\n      }\n    }\n  }\n}\n```\n\n#### For pip installation:\n```json\n{\n  \"mcpServers\": {\n    \"aceflow\": {\n      \"command\": \"aceflow-mcp-server\",\n      \"args\": [],\n      \"env\": {\n        \"ACEFLOW_LOG_LEVEL\": \"INFO\"\n      }\n    }\n  }\n}\n```\n\n### Usage Example\n\n```\nUser: \"I want to start a new AI project with standard workflow\"\n\nAI: I'll help you initialize a new project using AceFlow.\n\n[Uses aceflow_init tool]\n\u2705 Project initialized successfully in standard mode!\n\nCurrent status:\n- Project: ai-project\n- Mode: STANDARD\n- Stage: user_stories (0% complete)\n\nReady to begin with user story analysis. Would you like guidance for this stage?\n```\n\n## Workflow Modes\n\n### Minimal Mode\nFast prototyping and concept validation\n- 3 stages: Implementation \u2192 Test \u2192 Demo\n- Ideal for MVPs and quick experiments\n\n### Standard Mode  \nTraditional software development workflow\n- 8 stages: User Stories \u2192 Task Breakdown \u2192 Test Design \u2192 Implementation \u2192 Unit Test \u2192 Integration Test \u2192 Code Review \u2192 Demo\n- Balanced approach for most projects\n\n### Complete Mode\nEnterprise-grade development process\n- 12 stages: Full requirements analysis through security review\n- Comprehensive quality gates and documentation\n\n### Smart Mode\nAI-enhanced adaptive workflow\n- 10 stages with intelligent adaptation\n- Dynamic complexity assessment and optimization\n\n## Architecture\n\n```\n\u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510    \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510    \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\n\u2502   AI Client     \u2502    \u2502  MCP Server     \u2502    \u2502  AceFlow Core   \u2502\n\u2502  (Kiro/Cursor)  \u2502\u25c4\u2500\u2500\u25ba\u2502   (FastMCP)     \u2502\u25c4\u2500\u2500\u25ba\u2502    Engine       \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518    \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518    \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n                              \u2502\n                              \u25bc\n                       \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\n                       \u2502  File System    \u2502\n                       \u2502 (.aceflow/...)  \u2502\n                       \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n```\n\n## Development\n\n### Setup\n\n```bash\n# Clone repository\ngit clone https://github.com/aceflow/aceflow-mcp-server\ncd aceflow-mcp-server\n\n# Install development dependencies\npip install -e \".[dev]\"\n\n# Run tests\npytest\n\n# Run with coverage\npytest --cov=aceflow_mcp_server\n```\n\n### Project Structure\n\n```\naceflow-mcp-server/\n\u251c\u2500\u2500 aceflow_mcp_server/\n\u2502   \u251c\u2500\u2500 __init__.py\n\u2502   \u251c\u2500\u2500 server.py          # Main MCP server\n\u2502   \u251c\u2500\u2500 tools.py           # MCP tools implementation\n\u2502   \u251c\u2500\u2500 resources.py       # MCP resources\n\u2502   \u251c\u2500\u2500 prompts.py         # MCP prompts\n\u2502   \u2514\u2500\u2500 core/              # Core functionality\n\u251c\u2500\u2500 tests/                 # Test suite\n\u251c\u2500\u2500 docs/                  # Documentation\n\u2514\u2500\u2500 pyproject.toml         # Project configuration\n```\n\n## Contributing\n\n1. Fork the repository\n2. Create a feature branch\n3. Add tests for new functionality\n4. Ensure all tests pass\n5. Submit a pull request\n\n## License\n\nMIT License - see LICENSE file for details.\n\n## Support\n\n- **Documentation**: https://docs.aceflow.dev/mcp\n- **Issues**: https://github.com/aceflow/aceflow-mcp-server/issues\n- **Discussions**: https://github.com/aceflow/aceflow-mcp-server/discussions\n\n---\n\n*Generated by AceFlow v3.0 MCP Server*\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "AceFlow MCP Server - AI-\u534f\u4f5c\u589e\u5f3a\u7248\uff0c\u652f\u6301\u53cc\u5411AI-MCP\u6570\u636e\u4ea4\u6362\u7684\u667a\u80fd\u5f00\u53d1\u5de5\u4f5c\u6d41\u670d\u52a1\u5668\uff0c\u652f\u6301HTTP\u548cstdio\u4f20\u8f93\u6a21\u5f0f",
    "version": "2.1.1",
    "project_urls": {
        "Documentation": "https://docs.aceflow.dev/mcp",
        "Homepage": "https://github.com/aceflow-pateoas/aceflow-ai",
        "Issues": "https://github.com/aceflow-pateoas/aceflow-ai/issues",
        "Repository": "https://github.com/aceflow-pateoas/aceflow-ai.git"
    },
    "split_keywords": [
        "mcp",
        " model-context-protocol",
        " workflow",
        " ai-collaboration",
        " ai-tools",
        " dual-direction",
        " intelligent-workflow",
        " claude-code",
        " cursor"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ec91204c7d6f008989306de6310e0d554d1863f3a84afee3715ce18052c9f264",
                "md5": "dae7f0b75d4c72ee8648aa8c5932ec20",
                "sha256": "b2cf3f174bed6b0d311d828cc4b88597241f1ab565d5c9af2fdb07978f96eb18"
            },
            "downloads": -1,
            "filename": "aceflow_mcp_server-2.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dae7f0b75d4c72ee8648aa8c5932ec20",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 71712,
            "upload_time": "2025-09-14T11:25:01",
            "upload_time_iso_8601": "2025-09-14T11:25:01.910873Z",
            "url": "https://files.pythonhosted.org/packages/ec/91/204c7d6f008989306de6310e0d554d1863f3a84afee3715ce18052c9f264/aceflow_mcp_server-2.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c84d669ff828c278065b61de47baf3bae6990f11a4e656ad1bf70bd7c927c82b",
                "md5": "22b22fcac931efe3f4542615c33cbb09",
                "sha256": "602105df1c9d09731100796f8f61b30da9e7df713b9ad3255dee7bea5e638dc6"
            },
            "downloads": -1,
            "filename": "aceflow_mcp_server-2.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "22b22fcac931efe3f4542615c33cbb09",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 79408,
            "upload_time": "2025-09-14T11:25:03",
            "upload_time_iso_8601": "2025-09-14T11:25:03.642148Z",
            "url": "https://files.pythonhosted.org/packages/c8/4d/669ff828c278065b61de47baf3bae6990f11a4e656ad1bf70bd7c927c82b/aceflow_mcp_server-2.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-14 11:25:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "aceflow-pateoas",
    "github_project": "aceflow-ai",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "aceflow-mcp-server"
}
        
Elapsed time: 2.32941s