Name | acia JSON |
Version |
0.2.37
JSON |
| download |
home_page | https://github.com/JojoDevel/acia |
Summary | The acia library provides utility functionality for analyzing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments. |
upload_time | 2024-12-10 12:48:40 |
maintainer | None |
docs_url | None |
author | Johannes Seiffarth |
requires_python | >=3.6 |
license | MIT license |
keywords |
acia
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# **acia**: Automated single-cell image analysis
![pipeline](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/pipeline.svg)
![coverage](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/coverage.svg)
The `acia` library provides utility functionality for analysing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments. It provides:
- Abstraction for various image sources (local, OMERO)
- automated image analysis for instance segmentation and tracking
- automated and unit-aware single-object property extraction.
Although the funtionality is developed with microfluidic applications in mind, the library can be used for any objects detected in images.
## Installation
Install `acia` from pypi:
```bash
pip install acia
```
## Developers
1. Clone this repository
```bash
git clone https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia
```
2. Create the conda environment (including dependencies) and install `acia`
```bash
conda env create -f conda.yaml
conda activate acia
pip install -e .
```
Raw data
{
"_id": null,
"home_page": "https://github.com/JojoDevel/acia",
"name": "acia",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "acia",
"author": "Johannes Seiffarth",
"author_email": "j.seiffarth@fz-juelich.de",
"download_url": "https://files.pythonhosted.org/packages/06/32/414a1b6c4d6dc871b13f17408a01b63732863ae5be52e63cacf18948e2c8/acia-0.2.37.tar.gz",
"platform": null,
"description": "# **acia**: Automated single-cell image analysis\n\n![pipeline](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/pipeline.svg)\n![coverage](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/coverage.svg)\n\nThe `acia` library provides utility functionality for analysing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments. It provides:\n- Abstraction for various image sources (local, OMERO)\n- automated image analysis for instance segmentation and tracking\n- automated and unit-aware single-object property extraction.\n\nAlthough the funtionality is developed with microfluidic applications in mind, the library can be used for any objects detected in images.\n\n## Installation\n\nInstall `acia` from pypi:\n\n```bash\npip install acia\n```\n\n\n## Developers\n\n1. Clone this repository\n ```bash\n git clone https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia\n ```\n\n2. Create the conda environment (including dependencies) and install `acia`\n\n ```bash\n conda env create -f conda.yaml\n conda activate acia\n pip install -e .\n ```\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "The acia library provides utility functionality for analyzing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments.",
"version": "0.2.37",
"project_urls": {
"Homepage": "https://github.com/JojoDevel/acia"
},
"split_keywords": [
"acia"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e344e0c414f3202164363ad9db91a2cad826ca74798d1b1b1a225ffc07a121e2",
"md5": "76f461715ff617ca69f0ba66b428cffb",
"sha256": "0dbd7939b267915008abaf2638def0e6a853053c9d42d23ea8c296aa854ea25a"
},
"downloads": -1,
"filename": "acia-0.2.37-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "76f461715ff617ca69f0ba66b428cffb",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 57135,
"upload_time": "2024-12-10T12:48:37",
"upload_time_iso_8601": "2024-12-10T12:48:37.672010Z",
"url": "https://files.pythonhosted.org/packages/e3/44/e0c414f3202164363ad9db91a2cad826ca74798d1b1b1a225ffc07a121e2/acia-0.2.37-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0632414a1b6c4d6dc871b13f17408a01b63732863ae5be52e63cacf18948e2c8",
"md5": "d308f1331d059d7cad41960a04b79fbf",
"sha256": "b7357a604964bd07a7250f23d6a051c014020061c98848dae370f65cf11f2ce2"
},
"downloads": -1,
"filename": "acia-0.2.37.tar.gz",
"has_sig": false,
"md5_digest": "d308f1331d059d7cad41960a04b79fbf",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 61212,
"upload_time": "2024-12-10T12:48:40",
"upload_time_iso_8601": "2024-12-10T12:48:40.156792Z",
"url": "https://files.pythonhosted.org/packages/06/32/414a1b6c4d6dc871b13f17408a01b63732863ae5be52e63cacf18948e2c8/acia-0.2.37.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-10 12:48:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "JojoDevel",
"github_project": "acia",
"github_not_found": true,
"lcname": "acia"
}