acia


Nameacia JSON
Version 0.2.37 PyPI version JSON
download
home_pagehttps://github.com/JojoDevel/acia
SummaryThe acia library provides utility functionality for analyzing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments.
upload_time2024-12-10 12:48:40
maintainerNone
docs_urlNone
authorJohannes Seiffarth
requires_python>=3.6
licenseMIT license
keywords acia
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # **acia**: Automated single-cell image analysis

![pipeline](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/pipeline.svg)
![coverage](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/coverage.svg)

The `acia` library provides utility functionality for analysing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments. It provides:
- Abstraction for various image sources (local, OMERO)
- automated image analysis for instance segmentation and tracking
- automated and unit-aware single-object property extraction.

Although the funtionality is developed with microfluidic applications in mind, the library can be used for any objects detected in images.

## Installation

Install `acia` from pypi:

```bash
pip install acia
```


## Developers

1. Clone this repository
    ```bash
    git clone https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia
    ```

2. Create the conda environment (including dependencies) and install `acia`

    ```bash
    conda env create -f conda.yaml
    conda activate acia
    pip install -e .
    ```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JojoDevel/acia",
    "name": "acia",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "acia",
    "author": "Johannes Seiffarth",
    "author_email": "j.seiffarth@fz-juelich.de",
    "download_url": "https://files.pythonhosted.org/packages/06/32/414a1b6c4d6dc871b13f17408a01b63732863ae5be52e63cacf18948e2c8/acia-0.2.37.tar.gz",
    "platform": null,
    "description": "# **acia**: Automated single-cell image analysis\n\n![pipeline](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/pipeline.svg)\n![coverage](https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia/badges/master/coverage.svg)\n\nThe `acia` library provides utility functionality for analysing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments. It provides:\n- Abstraction for various image sources (local, OMERO)\n- automated image analysis for instance segmentation and tracking\n- automated and unit-aware single-object property extraction.\n\nAlthough the funtionality is developed with microfluidic applications in mind, the library can be used for any objects detected in images.\n\n## Installation\n\nInstall `acia` from pypi:\n\n```bash\npip install acia\n```\n\n\n## Developers\n\n1. Clone this repository\n    ```bash\n    git clone https://jugit.fz-juelich.de/IBG-1/ModSim/imageanalysis/acia\n    ```\n\n2. Create the conda environment (including dependencies) and install `acia`\n\n    ```bash\n    conda env create -f conda.yaml\n    conda activate acia\n    pip install -e .\n    ```\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "The acia library provides utility functionality for analyzing 2D+t time-lapse image sequences in microfluidic live-cell imaging experiments.",
    "version": "0.2.37",
    "project_urls": {
        "Homepage": "https://github.com/JojoDevel/acia"
    },
    "split_keywords": [
        "acia"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e344e0c414f3202164363ad9db91a2cad826ca74798d1b1b1a225ffc07a121e2",
                "md5": "76f461715ff617ca69f0ba66b428cffb",
                "sha256": "0dbd7939b267915008abaf2638def0e6a853053c9d42d23ea8c296aa854ea25a"
            },
            "downloads": -1,
            "filename": "acia-0.2.37-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "76f461715ff617ca69f0ba66b428cffb",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 57135,
            "upload_time": "2024-12-10T12:48:37",
            "upload_time_iso_8601": "2024-12-10T12:48:37.672010Z",
            "url": "https://files.pythonhosted.org/packages/e3/44/e0c414f3202164363ad9db91a2cad826ca74798d1b1b1a225ffc07a121e2/acia-0.2.37-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0632414a1b6c4d6dc871b13f17408a01b63732863ae5be52e63cacf18948e2c8",
                "md5": "d308f1331d059d7cad41960a04b79fbf",
                "sha256": "b7357a604964bd07a7250f23d6a051c014020061c98848dae370f65cf11f2ce2"
            },
            "downloads": -1,
            "filename": "acia-0.2.37.tar.gz",
            "has_sig": false,
            "md5_digest": "d308f1331d059d7cad41960a04b79fbf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 61212,
            "upload_time": "2024-12-10T12:48:40",
            "upload_time_iso_8601": "2024-12-10T12:48:40.156792Z",
            "url": "https://files.pythonhosted.org/packages/06/32/414a1b6c4d6dc871b13f17408a01b63732863ae5be52e63cacf18948e2c8/acia-0.2.37.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-10 12:48:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JojoDevel",
    "github_project": "acia",
    "github_not_found": true,
    "lcname": "acia"
}
        
Elapsed time: 0.37840s