<h1 align="center">Ant Colony Optimization</h1>
[![Develop](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/develop.yml/badge.svg)](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/develop.yml)
[![Deploy](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/deploy.yml/badge.svg)](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/deploy.yml)
[![PyPi version](https://img.shields.io/pypi/v/aco_routing.svg)](https://pypi.python.org/pypi/aco_routing/)
![Downloads](https://img.shields.io/pypi/dm/aco_routing.svg)
<!-- [![Python versions](https://img.shields.io/pypi/pyversions/aco_routing.svg?style=plastic)](https://img.shields.io/pypi/pyversions/aco_routing.svg?style=plastic) -->
A Python package to find the shortest path in a graph using Ant Colony Optimization (ACO).
➡️ Check out my [Medium article](https://medium.com/@hasnain.roopawalla/ant-colony-optimization-1bbc346c2da5) for a detailed walkthrough 🚀
The Ant colony Optimization algorithm is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs ([source](https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms)).
This implementation of the ACO algorithm uses the [NetworkX](https://networkx.org/) graph environment.
## 🏁 Getting Started <a name = "getting_started"></a>
### To install the package directly from PyPi:
```
$ pip install aco_routing
```
## 🎈 Usage <a name="usage"></a>
> Check out: [example.py](https://github.com/hasnainroopawalla/ant-colony-optimization/blob/master/example.py)
Import all the dependencies:
```python
from aco_routing import ACO
import networkx as nx
```
Create a `NetworkX.Graph` object with nodes and edges:
```python
G = nx.DiGraph()
G.add_edge("A", "B", cost=2)
G.add_edge("B", "C", cost=2)
G.add_edge("A", "H", cost=2)
G.add_edge("H", "G", cost=2)
G.add_edge("C", "F", cost=1)
G.add_edge("F", "G", cost=1)
G.add_edge("G", "F", cost=1)
G.add_edge("F", "C", cost=1)
G.add_edge("C", "D", cost=10)
G.add_edge("E", "D", cost=2)
G.add_edge("G", "E", cost=2)
```
Use ACO to find the shortest path and cost between the `source` and `destination`:
```python
aco = ACO(G, ant_max_steps=100, num_iterations=100, ant_random_spawn=True)
aco_path, aco_cost = aco.find_shortest_path(
source="A",
destination="D",
num_ants=100,
)
```
Output:
```
ACO path: A -> H -> G -> E -> D
ACO path cost: 8.0
```
## 📦 Contents <a name = "contents"></a>
### Ant
`aco_routing.Ant`
- An `Ant` that traverses the graph.
### ACO
`aco_routing.ACO`
- The traditional Ant Colony Optimization algorithm that spawns ants at various nodes in the graph and finds the shortest path between the specified source and destination ([pseudo code](https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#Algorithm_and_formula)).
## Contributing
- Post any issues and suggestions on the GitHub [issues](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/issues) page.
- To contribute, fork the project and then create a pull request back to master.
Raw data
{
"_id": null,
"home_page": "https://github.com/hasnainroopawalla/ant-colony-optimization",
"name": "aco-routing",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "python, machinelearning, ai, aco",
"author": "Hasnain Roopawalla",
"author_email": "hasnain.roopawalla@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/80/c7/a0d2936d1e06952975607cc69a9d516214665d0f49017868a30d818e9324/aco_routing-1.1.1.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">Ant Colony Optimization</h1>\n\n[![Develop](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/develop.yml/badge.svg)](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/develop.yml)\n[![Deploy](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/deploy.yml/badge.svg)](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/actions/workflows/deploy.yml)\n[![PyPi version](https://img.shields.io/pypi/v/aco_routing.svg)](https://pypi.python.org/pypi/aco_routing/)\n![Downloads](https://img.shields.io/pypi/dm/aco_routing.svg)\n\n<!-- [![Python versions](https://img.shields.io/pypi/pyversions/aco_routing.svg?style=plastic)](https://img.shields.io/pypi/pyversions/aco_routing.svg?style=plastic) -->\n\nA Python package to find the shortest path in a graph using Ant Colony Optimization (ACO).\n\n\u27a1\ufe0f Check out my [Medium article](https://medium.com/@hasnain.roopawalla/ant-colony-optimization-1bbc346c2da5) for a detailed walkthrough \ud83d\ude80\n\nThe Ant colony Optimization algorithm is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs ([source](https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms)).\n\nThis implementation of the ACO algorithm uses the [NetworkX](https://networkx.org/) graph environment.\n\n## \ud83c\udfc1 Getting Started <a name = \"getting_started\"></a>\n\n### To install the package directly from PyPi:\n\n```\n$ pip install aco_routing\n```\n\n## \ud83c\udf88 Usage <a name=\"usage\"></a>\n\n> Check out: [example.py](https://github.com/hasnainroopawalla/ant-colony-optimization/blob/master/example.py)\n\nImport all the dependencies:\n\n```python\nfrom aco_routing import ACO\nimport networkx as nx\n```\n\nCreate a `NetworkX.Graph` object with nodes and edges:\n\n```python\nG = nx.DiGraph()\n\nG.add_edge(\"A\", \"B\", cost=2)\nG.add_edge(\"B\", \"C\", cost=2)\nG.add_edge(\"A\", \"H\", cost=2)\nG.add_edge(\"H\", \"G\", cost=2)\nG.add_edge(\"C\", \"F\", cost=1)\nG.add_edge(\"F\", \"G\", cost=1)\nG.add_edge(\"G\", \"F\", cost=1)\nG.add_edge(\"F\", \"C\", cost=1)\nG.add_edge(\"C\", \"D\", cost=10)\nG.add_edge(\"E\", \"D\", cost=2)\nG.add_edge(\"G\", \"E\", cost=2)\n```\n\nUse ACO to find the shortest path and cost between the `source` and `destination`:\n\n```python\naco = ACO(G, ant_max_steps=100, num_iterations=100, ant_random_spawn=True)\n\naco_path, aco_cost = aco.find_shortest_path(\n source=\"A\",\n destination=\"D\",\n num_ants=100,\n)\n```\n\nOutput:\n\n```\nACO path: A -> H -> G -> E -> D\nACO path cost: 8.0\n```\n\n## \ud83d\udce6 Contents <a name = \"contents\"></a>\n\n### Ant\n\n`aco_routing.Ant`\n\n- An `Ant` that traverses the graph.\n\n### ACO\n\n`aco_routing.ACO`\n\n- The traditional Ant Colony Optimization algorithm that spawns ants at various nodes in the graph and finds the shortest path between the specified source and destination ([pseudo code](https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#Algorithm_and_formula)).\n\n## Contributing\n\n- Post any issues and suggestions on the GitHub [issues](https://github.com/hasnainroopawalla/Ant-Colony-Optimization/issues) page.\n- To contribute, fork the project and then create a pull request back to master.\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package to find the shortest path in a graph using Ant Colony Optimization (ACO)",
"version": "1.1.1",
"project_urls": {
"Homepage": "https://github.com/hasnainroopawalla/ant-colony-optimization"
},
"split_keywords": [
"python",
" machinelearning",
" ai",
" aco"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ba456163a00ce560bbfefd7bdea051987c999ad24f2a8c5292029ad0c4907f77",
"md5": "c74825f54e89acadaaccad940c6e0a9d",
"sha256": "c79e5b21829830c49cbb064b47c42d86124a057a0e66ed81fdcbf91114236a0b"
},
"downloads": -1,
"filename": "aco_routing-1.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c74825f54e89acadaaccad940c6e0a9d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 8513,
"upload_time": "2024-06-03T06:45:07",
"upload_time_iso_8601": "2024-06-03T06:45:07.667709Z",
"url": "https://files.pythonhosted.org/packages/ba/45/6163a00ce560bbfefd7bdea051987c999ad24f2a8c5292029ad0c4907f77/aco_routing-1.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "80c7a0d2936d1e06952975607cc69a9d516214665d0f49017868a30d818e9324",
"md5": "02f252b1448b4a1e1fbd8d128700d3a5",
"sha256": "d0a6dc14e7c1c05f55a77b885b1c6f227d61d5d49925778a391e089aea59cdd5"
},
"downloads": -1,
"filename": "aco_routing-1.1.1.tar.gz",
"has_sig": false,
"md5_digest": "02f252b1448b4a1e1fbd8d128700d3a5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 7634,
"upload_time": "2024-06-03T06:45:09",
"upload_time_iso_8601": "2024-06-03T06:45:09.525152Z",
"url": "https://files.pythonhosted.org/packages/80/c7/a0d2936d1e06952975607cc69a9d516214665d0f49017868a30d818e9324/aco_routing-1.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-03 06:45:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hasnainroopawalla",
"github_project": "ant-colony-optimization",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "networkx",
"specs": []
},
{
"name": "matplotlib",
"specs": []
}
],
"lcname": "aco-routing"
}