# actscene-ocr
日本語の各種書類向けに最適化した OCR ライブラリ
## インストール
```
pip install actscene-ocr
```
## 使い方
```python
from actscene_ocr import ActsceneOCR
ocr = ActsceneOCR()
# 基本的な使い方(画像パス + max_segment_pixels のみ)
result = ocr.shaken("/path/to/image.jpg")
# 全メソッド一覧
res1 = ocr.shaken_kiroku("/path/to/image.jpg")
# -> {"所有者の氏名又は名称": "", "所有者の住所": "", "自動車登録番号又は車両番号": "",
# "初度登録年月": "", "有効期限の満了する日": "", "車台番号": ""}
res2 = ocr.shaken("/path/to/image.jpg")
# -> {"使用者の氏名又は名称": "", "自動車登録番号又は車両番号": "",
# "初度登録年月": "", "車台番号": ""}
res3 = ocr.recycle("/path/to/image.jpg")
# -> {"預託金額合計": "", "車台番号": ""}
res4 = ocr.jouto("/path/to/image.jpg")
# -> {"譲渡人及び譲受人の氏名又は名称及び住所": ""}
res5 = ocr.jibaiseki("/path/to/image.jpg")
# -> {"車台番号": "", "保険期間至": ""}
res6 = ocr.inkan("/path/to/image.jpg")
# -> {"氏名": "", "住所": ""}
res7 = ocr.inin("/path/to/image.jpg")
# -> {"委任人の氏名又は名称及び住所": ""}
```
### 共通引数
- `image`: 画像パス、`numpy.ndarray`、`PIL.Image.Image` のいずれか
- `max_segment_pixels`: セグメントの最大ピクセル数(既定 1,000,000)
- `debug_dir`: デバッグ画像の出力先ディレクトリ(省略可)
## ライセンス
MIT
Raw data
{
"_id": null,
"home_page": null,
"name": "actscene-ocr",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "OCR, PaddleOCR, Japanese, Document, actscene",
"author": null,
"author_email": "Actscene <dev@actscene.example>",
"download_url": "https://files.pythonhosted.org/packages/e9/27/f5aa4c11641f2c235ba9a75b68a2155b13a78f8b28b76c90c68000dbf036/actscene_ocr-0.1.5.tar.gz",
"platform": null,
"description": "# actscene-ocr\n\n\u65e5\u672c\u8a9e\u306e\u5404\u7a2e\u66f8\u985e\u5411\u3051\u306b\u6700\u9069\u5316\u3057\u305f OCR \u30e9\u30a4\u30d6\u30e9\u30ea\n\n## \u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\n\n```\npip install actscene-ocr\n```\n\n## \u4f7f\u3044\u65b9\n\n```python\nfrom actscene_ocr import ActsceneOCR\n\nocr = ActsceneOCR()\n\n# \u57fa\u672c\u7684\u306a\u4f7f\u3044\u65b9\uff08\u753b\u50cf\u30d1\u30b9 + max_segment_pixels \u306e\u307f\uff09\nresult = ocr.shaken(\"/path/to/image.jpg\")\n\n# \u5168\u30e1\u30bd\u30c3\u30c9\u4e00\u89a7\nres1 = ocr.shaken_kiroku(\"/path/to/image.jpg\")\n# -> {\"\u6240\u6709\u8005\u306e\u6c0f\u540d\u53c8\u306f\u540d\u79f0\": \"\", \"\u6240\u6709\u8005\u306e\u4f4f\u6240\": \"\", \"\u81ea\u52d5\u8eca\u767b\u9332\u756a\u53f7\u53c8\u306f\u8eca\u4e21\u756a\u53f7\": \"\",\n# \"\u521d\u5ea6\u767b\u9332\u5e74\u6708\": \"\", \"\u6709\u52b9\u671f\u9650\u306e\u6e80\u4e86\u3059\u308b\u65e5\": \"\", \"\u8eca\u53f0\u756a\u53f7\": \"\"}\n\nres2 = ocr.shaken(\"/path/to/image.jpg\")\n# -> {\"\u4f7f\u7528\u8005\u306e\u6c0f\u540d\u53c8\u306f\u540d\u79f0\": \"\", \"\u81ea\u52d5\u8eca\u767b\u9332\u756a\u53f7\u53c8\u306f\u8eca\u4e21\u756a\u53f7\": \"\",\n# \"\u521d\u5ea6\u767b\u9332\u5e74\u6708\": \"\", \"\u8eca\u53f0\u756a\u53f7\": \"\"}\n\nres3 = ocr.recycle(\"/path/to/image.jpg\")\n# -> {\"\u9810\u8a17\u91d1\u984d\u5408\u8a08\": \"\", \"\u8eca\u53f0\u756a\u53f7\": \"\"}\n\nres4 = ocr.jouto(\"/path/to/image.jpg\")\n# -> {\"\u8b72\u6e21\u4eba\u53ca\u3073\u8b72\u53d7\u4eba\u306e\u6c0f\u540d\u53c8\u306f\u540d\u79f0\u53ca\u3073\u4f4f\u6240\": \"\"}\n\nres5 = ocr.jibaiseki(\"/path/to/image.jpg\")\n# -> {\"\u8eca\u53f0\u756a\u53f7\": \"\", \"\u4fdd\u967a\u671f\u9593\u81f3\": \"\"}\n\nres6 = ocr.inkan(\"/path/to/image.jpg\")\n# -> {\"\u6c0f\u540d\": \"\", \"\u4f4f\u6240\": \"\"}\n\nres7 = ocr.inin(\"/path/to/image.jpg\")\n# -> {\"\u59d4\u4efb\u4eba\u306e\u6c0f\u540d\u53c8\u306f\u540d\u79f0\u53ca\u3073\u4f4f\u6240\": \"\"}\n```\n\n### \u5171\u901a\u5f15\u6570\n\n- `image`: \u753b\u50cf\u30d1\u30b9\u3001`numpy.ndarray`\u3001`PIL.Image.Image` \u306e\u3044\u305a\u308c\u304b\n- `max_segment_pixels`: \u30bb\u30b0\u30e1\u30f3\u30c8\u306e\u6700\u5927\u30d4\u30af\u30bb\u30eb\u6570\uff08\u65e2\u5b9a 1,000,000\uff09\n- `debug_dir`: \u30c7\u30d0\u30c3\u30b0\u753b\u50cf\u306e\u51fa\u529b\u5148\u30c7\u30a3\u30ec\u30af\u30c8\u30ea\uff08\u7701\u7565\u53ef\uff09\n\n## \u30e9\u30a4\u30bb\u30f3\u30b9\n\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Actscene OCR: \u65e5\u672c\u8a9e\u66f8\u985e\u5411\u3051\u306e\u5305\u62ec\u7684OCR\u30d1\u30a4\u30d7\u30e9\u30a4\u30f3 (PaddleOCR\u30d9\u30fc\u30b9)",
"version": "0.1.5",
"project_urls": null,
"split_keywords": [
"ocr",
" paddleocr",
" japanese",
" document",
" actscene"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a0e3afbcda6f657c1922cf84bd23b244ba3856f222b06497ab07f673d6fe6136",
"md5": "8da08e76e618f0bfd37c07618e294c10",
"sha256": "594590338e0fd6ef0b5ec0139c3b5cecc29b7542616057c9445630a377c689cc"
},
"downloads": -1,
"filename": "actscene_ocr-0.1.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8da08e76e618f0bfd37c07618e294c10",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 38067,
"upload_time": "2025-08-19T18:51:12",
"upload_time_iso_8601": "2025-08-19T18:51:12.900788Z",
"url": "https://files.pythonhosted.org/packages/a0/e3/afbcda6f657c1922cf84bd23b244ba3856f222b06497ab07f673d6fe6136/actscene_ocr-0.1.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e927f5aa4c11641f2c235ba9a75b68a2155b13a78f8b28b76c90c68000dbf036",
"md5": "0cff1cab7b61e201f69ab020df4c734f",
"sha256": "ce35cd917c7857cd243fee7b5fa67f27b55c4847721f6b5c5f1db98702e3e5eb"
},
"downloads": -1,
"filename": "actscene_ocr-0.1.5.tar.gz",
"has_sig": false,
"md5_digest": "0cff1cab7b61e201f69ab020df4c734f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 31158,
"upload_time": "2025-08-19T18:51:14",
"upload_time_iso_8601": "2025-08-19T18:51:14.233774Z",
"url": "https://files.pythonhosted.org/packages/e9/27/f5aa4c11641f2c235ba9a75b68a2155b13a78f8b28b76c90c68000dbf036/actscene_ocr-0.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-19 18:51:14",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "actscene-ocr"
}