Name | adapol JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | Adaptive Pole Fitting for Quantum Many-Body Physics |
upload_time | 2024-07-05 14:36:20 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.7 |
license | None |
keywords |
bath
fitting
hybridization
dmft
matsubara
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# adapol: Adaptive Pole Fitting for Quantum Many-Body Physics
[`adapol`](https://github.com/Hertz4/Adapol) (pronounced "add a pole") is a python package for fitting Matsubara functions with the following form:
```math
G(\mathrm i \omega_k) = \sum_l \frac{V_lV_l^{\dagger}}{\mathrm i\omega_k - E_l}.
```
Current applications include
(1) hybridization fitting, (2) analytic continuation.
We also provide a [TRIQS](https://triqs.github.io/) interface if the Matsubara functions are stored in `triqs` Green's function container.
# Installation
`adapol` has `numpy` and `scipy` as its prerequisites. [`cvxpy`](https://www.cvxpy.org/) is also required for hybridization fitting of matrix-valued (instead of scalar-valued) Matsubara functions.
To install `adapol`, run
```terminal
pip install adapol
```
# Documentation
See the detailed [documentation](https://flatironinstitute.github.io/adapol/) for physical background, algorithms and user manual.
`Adapol` is a stand-alone package. For TRIQS users, we also provide a TRIQS interface. See [user manual](https://flatironinstitute.github.io/adapol/latest/python.html#triqs-interface) for details.
# Examples
In the `tutorial` page, we provide two examples [`discrete.ipynb`](https://flatironinstitute.github.io/adapol/latest/tutorials/discrete.html) and [`semicircle.ipynb`](https://flatironinstitute.github.io/adapol/latest/tutorials/semicircle.html), showcasing how to use `adapol` for both discrete spectrum and continuous spectrum.
In these notebooks, we also demonstrate how to use our code through the triqs interface.
# References
To cite this work, please include a reference to this GitHub repository, and
cite the following references:
1. Huang, Zhen, Emanuel Gull, and Lin Lin. "Robust analytic continuation of Green's functions via projection, pole estimation, and semidefinite relaxation." Physical Review B 107.7 (2023): 075151.
2. Mejuto-Zaera, Carlos, et al. "Efficient hybridization fitting for dynamical mean-field theory via semi-definite relaxation." Physical Review B 101.3 (2020): 035143.
3. Nakatsukasa, Yuji, Olivier Sète, and Lloyd N. Trefethen. "The AAA algorithm for rational approximation." SIAM Journal on Scientific Computing 40.3 (2018): A1494-A1522.
Raw data
{
"_id": null,
"home_page": null,
"name": "adapol",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "Bath, Fitting, Hybridization, DMFT, Matsubara",
"author": null,
"author_email": "Zhen Huang <hertz@berkeley.edu>, Chia-Nan Yeh <cyeh@flatironinstitute.org>, Nils Wentzell <nwentzell@flatironinstitute.org>, Jason Kaye <jkaye@flatironinstitute.org>, Lin Lin <linlin@berkeley.edu>",
"download_url": "https://files.pythonhosted.org/packages/2e/73/f5f23286b858ba69bfbb041f70a330491fd6d92796173dd255cbf5a630f6/adapol-0.1.0.tar.gz",
"platform": null,
"description": "# adapol: Adaptive Pole Fitting for Quantum Many-Body Physics\n[`adapol`](https://github.com/Hertz4/Adapol) (pronounced \"add a pole\") is a python package for fitting Matsubara functions with the following form:\n```math\nG(\\mathrm i \\omega_k) = \\sum_l \\frac{V_lV_l^{\\dagger}}{\\mathrm i\\omega_k - E_l}.\n```\n\nCurrent applications include\n(1) hybridization fitting, (2) analytic continuation.\n\nWe also provide a [TRIQS](https://triqs.github.io/) interface if the Matsubara functions are stored in `triqs` Green's function container.\n\n# Installation\n`adapol` has `numpy` and `scipy` as its prerequisites. [`cvxpy`](https://www.cvxpy.org/) is also required for hybridization fitting of matrix-valued (instead of scalar-valued) Matsubara functions.\n\nTo install `adapol`, run\n```terminal\npip install adapol\n```\n\n\n\n# Documentation\n\nSee the detailed [documentation](https://flatironinstitute.github.io/adapol/) for physical background, algorithms and user manual.\n\n`Adapol` is a stand-alone package. For TRIQS users, we also provide a TRIQS interface. See [user manual](https://flatironinstitute.github.io/adapol/latest/python.html#triqs-interface) for details.\n\n# Examples\nIn the `tutorial` page, we provide two examples [`discrete.ipynb`](https://flatironinstitute.github.io/adapol/latest/tutorials/discrete.html) and [`semicircle.ipynb`](https://flatironinstitute.github.io/adapol/latest/tutorials/semicircle.html), showcasing how to use `adapol` for both discrete spectrum and continuous spectrum.\n\nIn these notebooks, we also demonstrate how to use our code through the triqs interface.\n\n# References\nTo cite this work, please include a reference to this GitHub repository, and\ncite the following references:\n\n1. Huang, Zhen, Emanuel Gull, and Lin Lin. \"Robust analytic continuation of Green's functions via projection, pole estimation, and semidefinite relaxation.\" Physical Review B 107.7 (2023): 075151.\n2. Mejuto-Zaera, Carlos, et al. \"Efficient hybridization fitting for dynamical mean-field theory via semi-definite relaxation.\" Physical Review B 101.3 (2020): 035143.\n3. Nakatsukasa, Yuji, Olivier S\u00e8te, and Lloyd N. Trefethen. \"The AAA algorithm for rational approximation.\" SIAM Journal on Scientific Computing 40.3 (2018): A1494-A1522.\n",
"bugtrack_url": null,
"license": null,
"summary": "Adaptive Pole Fitting for Quantum Many-Body Physics",
"version": "0.1.0",
"project_urls": {
"Bug Tracker": "https://github.com/flatironinstitute/adapol/issues",
"Homepage": "https://flatironinstitute.github.io/adapol"
},
"split_keywords": [
"bath",
" fitting",
" hybridization",
" dmft",
" matsubara"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "205f664e90c7827e26a2bdcf1d886bdf356decd0c0f8b4cc7dec8a50eadca2a3",
"md5": "b86b136937ec073df89f3a9ddae5f34d",
"sha256": "c3cbedb798ca648b61d81a1bbf72ac26d80d963276731b6e923f22cc2aac7f0c"
},
"downloads": -1,
"filename": "adapol-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b86b136937ec073df89f3a9ddae5f34d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 11043,
"upload_time": "2024-07-05T14:36:15",
"upload_time_iso_8601": "2024-07-05T14:36:15.149781Z",
"url": "https://files.pythonhosted.org/packages/20/5f/664e90c7827e26a2bdcf1d886bdf356decd0c0f8b4cc7dec8a50eadca2a3/adapol-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2e73f5f23286b858ba69bfbb041f70a330491fd6d92796173dd255cbf5a630f6",
"md5": "69735fcf6e42673551b58f3938145e0a",
"sha256": "df09a238bc6f79a424dce68495bdfad3fe22fa2e39e8d43be53b01c44a9fcfaf"
},
"downloads": -1,
"filename": "adapol-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "69735fcf6e42673551b58f3938145e0a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 10502,
"upload_time": "2024-07-05T14:36:20",
"upload_time_iso_8601": "2024-07-05T14:36:20.334219Z",
"url": "https://files.pythonhosted.org/packages/2e/73/f5f23286b858ba69bfbb041f70a330491fd6d92796173dd255cbf5a630f6/adapol-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-05 14:36:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "flatironinstitute",
"github_project": "adapol",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "adapol"
}