adapt-parser


Nameadapt-parser JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/MycroftAI/adapt
SummaryA text-to-intent parsing framework.
upload_time2021-09-29 02:25:57
maintainer
docs_urlNone
authorSean Fitzgerald
requires_python
licenseApache License 2.0
keywords natural language processing
VCS
bugtrack_url
requirements six
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE.md) [![CLA](https://img.shields.io/badge/CLA%3F-Required-blue.svg)](https://mycroft.ai/cla) [![Team](https://img.shields.io/badge/Team-Mycroft_Core-violetblue.svg)](https://github.com/MycroftAI/contributors/blob/master/team/Mycroft%20Core.md) ![Status](https://img.shields.io/badge/-Production_ready-green.svg)

[![Build Status](https://travis-ci.org/MycroftAI/adapt.svg?branch=master)](https://travis-ci.org/MycroftAI/adapt) [![Coverage Status](https://coveralls.io/repos/github/MycroftAI/adapt/badge.svg?branch=dev)](https://coveralls.io/github/MycroftAI/adapt?branch=master)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](http://makeapullrequest.com)
[![Join chat](https://img.shields.io/badge/Mattermost-join_chat-brightgreen.svg)](https://chat.mycroft.ai)

Adapt Intent Parser
==================
The Adapt Intent Parser is a flexible and extensible intent definition and determination framework. It is intended to parse natural language text into a structured intent that can then be invoked programatically.

[![Introducing the Adapt Intent Parser](https://mycroft.ai/wp-content/uploads/2019/05/Adapt-video-still.png)](https://www.youtube.com/watch?v=zR9xvPtM6Ro)

Getting Started
===============
To take a dependency on Adapt, it's recommended to use virtualenv and pip to install source from github.

```bash
$ virtualenv myvirtualenv
$ . myvirtualenv/bin/activate
$ pip install -e git+https://github.com/mycroftai/adapt#egg=adapt-parser
```

Examples
========
Executable examples can be found in the [examples folder](https://github.com/MycroftAI/adapt/tree/master/examples).

Intent Modelling
================
In this context, an Intent is an action the system should perform. In the context of Pandora, we’ll define two actions: List Stations, and Select Station (aka start playback)

With the Adapt intent builder:
```Python
list_stations_intent = IntentBuilder('pandora:list_stations')\
    .require('Browse Music Command')\
    .build()
```

For the above, we are describing a “List Stations” intent, which has a single requirement of a “Browse Music Command” entity.

```Python
play_music_command = IntentBuilder('pandora:select_station')\
    .require('Listen Command')\
    .require('Pandora Station')\
    .optionally('Music Keyword')\
    .build()
```


For the above, we are describing a “Select Station” (aka start playback) intent, which requires a “Listen Command” entity, a “Pandora Station”, and optionally a “Music Keyword” entity.

Entities
========

Entities are a named value. Examples include:
`Blink 182` is an `Artist`
`The Big Bang Theory` is a `Television Show`
`Play` is a `Listen Command`
`Song(s)` is a `Music Keyword`

For my Pandora implementation, there is a static set of vocabulary for the Browse Music Command, Listen Command, and Music Keyword (defined by me, a native english speaker and all-around good guy). Pandora Station entities are populated via a "List Stations" API call to Pandora. Here’s what the vocabulary registration looks like.

```Python
def register_vocab(entity_type, entity_value):
    pass
    # a tiny bit of code 

def register_pandora_vocab(emitter):
    for v in ["stations"]:
        register_vocab('Browse Music Command', v)

    for v in ["play", "listen", "hear"]:
        register_vocab('Listen Command', v)

    for v in ["music", "radio"]:
        register_vocab('Music Keyword', v)

    for v in ["Pandora"]:
        register_vocab('Plugin Name', v)

    station_name_regex = re.compile(r"(.*) Radio")
    p = get_pandora()
    for station in p.stations:
        m = station_name_regex.match(station.get('stationName'))
        if not m:
            continue
        for match in m.groups():
            register_vocab('Pandora Station', match)
```

Development
===========

Glad you'd like to help!

To install test and development requirements run

```
pip install -r test-requirements.txt
```

This will install the test-requirements as well as the runtime requirements for adapt.

To test any changes before submitting them run

```
./run_tests.sh
```

This will run the same checks as the Github actions and verify that your code should pass with flying colours.

Reporting Issues
================
It's often difficult to debug issues with adapt without a complete context. To facilitate simpler debugging,
please include a serialized copy of the intent determination engine using the debug dump
utilities.

```python
from adapt.engine import IntentDeterminationEngine
engine = IntentDeterminationEngine()
# Load engine with vocabulary and parsers

import adapt.tools.debug as atd
atd.dump(engine, 'debug.adapt')
```

Learn More
========

Further documentation can be found at https://mycroft-ai.gitbook.io/docs/mycroft-technologies/adapt



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MycroftAI/adapt",
    "name": "adapt-parser",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "natural language processing",
    "author": "Sean Fitzgerald",
    "author_email": "sean@fitzgeralds.me",
    "download_url": "https://files.pythonhosted.org/packages/ff/97/236a8cf280b789a86a7e5b50d3602e189ecc9726ebbb5b3259bb43761b02/adapt-parser-1.0.0.tar.gz",
    "platform": "",
    "description": "[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE.md) [![CLA](https://img.shields.io/badge/CLA%3F-Required-blue.svg)](https://mycroft.ai/cla) [![Team](https://img.shields.io/badge/Team-Mycroft_Core-violetblue.svg)](https://github.com/MycroftAI/contributors/blob/master/team/Mycroft%20Core.md) ![Status](https://img.shields.io/badge/-Production_ready-green.svg)\n\n[![Build Status](https://travis-ci.org/MycroftAI/adapt.svg?branch=master)](https://travis-ci.org/MycroftAI/adapt) [![Coverage Status](https://coveralls.io/repos/github/MycroftAI/adapt/badge.svg?branch=dev)](https://coveralls.io/github/MycroftAI/adapt?branch=master)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](http://makeapullrequest.com)\n[![Join chat](https://img.shields.io/badge/Mattermost-join_chat-brightgreen.svg)](https://chat.mycroft.ai)\n\nAdapt Intent Parser\n==================\nThe Adapt Intent Parser is a flexible and extensible intent definition and determination framework. It is intended to parse natural language text into a structured intent that can then be invoked programatically.\n\n[![Introducing the Adapt Intent Parser](https://mycroft.ai/wp-content/uploads/2019/05/Adapt-video-still.png)](https://www.youtube.com/watch?v=zR9xvPtM6Ro)\n\nGetting Started\n===============\nTo take a dependency on Adapt, it's recommended to use virtualenv and pip to install source from github.\n\n```bash\n$ virtualenv myvirtualenv\n$ . myvirtualenv/bin/activate\n$ pip install -e git+https://github.com/mycroftai/adapt#egg=adapt-parser\n```\n\nExamples\n========\nExecutable examples can be found in the [examples folder](https://github.com/MycroftAI/adapt/tree/master/examples).\n\nIntent Modelling\n================\nIn this context, an Intent is an action the system should perform. In the context of Pandora, we\u2019ll define two actions: List Stations, and Select Station (aka start playback)\n\nWith the Adapt intent builder:\n```Python\nlist_stations_intent = IntentBuilder('pandora:list_stations')\\\n    .require('Browse Music Command')\\\n    .build()\n```\n\nFor the above, we are describing a \u201cList Stations\u201d intent, which has a single requirement of a \u201cBrowse Music Command\u201d entity.\n\n```Python\nplay_music_command = IntentBuilder('pandora:select_station')\\\n    .require('Listen Command')\\\n    .require('Pandora Station')\\\n    .optionally('Music Keyword')\\\n    .build()\n```\n\n\nFor the above, we are describing a \u201cSelect Station\u201d (aka start playback) intent, which requires a \u201cListen Command\u201d entity, a \u201cPandora Station\u201d, and optionally a \u201cMusic Keyword\u201d entity.\n\nEntities\n========\n\nEntities are a named value. Examples include:\n`Blink 182` is an `Artist`\n`The Big Bang Theory` is a `Television Show`\n`Play` is a `Listen Command`\n`Song(s)` is a `Music Keyword`\n\nFor my Pandora implementation, there is a static set of vocabulary for the Browse Music Command, Listen Command, and Music Keyword (defined by me, a native english speaker and all-around good guy). Pandora Station entities are populated via a \"List Stations\" API call to Pandora. Here\u2019s what the vocabulary registration looks like.\n\n```Python\ndef register_vocab(entity_type, entity_value):\n    pass\n    # a tiny bit of code \n\ndef register_pandora_vocab(emitter):\n    for v in [\"stations\"]:\n        register_vocab('Browse Music Command', v)\n\n    for v in [\"play\", \"listen\", \"hear\"]:\n        register_vocab('Listen Command', v)\n\n    for v in [\"music\", \"radio\"]:\n        register_vocab('Music Keyword', v)\n\n    for v in [\"Pandora\"]:\n        register_vocab('Plugin Name', v)\n\n    station_name_regex = re.compile(r\"(.*) Radio\")\n    p = get_pandora()\n    for station in p.stations:\n        m = station_name_regex.match(station.get('stationName'))\n        if not m:\n            continue\n        for match in m.groups():\n            register_vocab('Pandora Station', match)\n```\n\nDevelopment\n===========\n\nGlad you'd like to help!\n\nTo install test and development requirements run\n\n```\npip install -r test-requirements.txt\n```\n\nThis will install the test-requirements as well as the runtime requirements for adapt.\n\nTo test any changes before submitting them run\n\n```\n./run_tests.sh\n```\n\nThis will run the same checks as the Github actions and verify that your code should pass with flying colours.\n\nReporting Issues\n================\nIt's often difficult to debug issues with adapt without a complete context. To facilitate simpler debugging,\nplease include a serialized copy of the intent determination engine using the debug dump\nutilities.\n\n```python\nfrom adapt.engine import IntentDeterminationEngine\nengine = IntentDeterminationEngine()\n# Load engine with vocabulary and parsers\n\nimport adapt.tools.debug as atd\natd.dump(engine, 'debug.adapt')\n```\n\nLearn More\n========\n\nFurther documentation can be found at https://mycroft-ai.gitbook.io/docs/mycroft-technologies/adapt\n\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "A text-to-intent parsing framework.",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/MycroftAI/adapt"
    },
    "split_keywords": [
        "natural",
        "language",
        "processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "13c09f3c286511554628eaacc7080ec69f30e8b2a5e3e078b37c4ed7703924b2",
                "md5": "ef7f3bb8cd764567fecb351f4bacc41c",
                "sha256": "e6839f79c6927ee5c645236420fd07db4a15d9bf2f0fe8e4c4fd28ad58d4e536"
            },
            "downloads": -1,
            "filename": "adapt_parser-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ef7f3bb8cd764567fecb351f4bacc41c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 31183,
            "upload_time": "2021-09-29T02:25:56",
            "upload_time_iso_8601": "2021-09-29T02:25:56.451093Z",
            "url": "https://files.pythonhosted.org/packages/13/c0/9f3c286511554628eaacc7080ec69f30e8b2a5e3e078b37c4ed7703924b2/adapt_parser-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff97236a8cf280b789a86a7e5b50d3602e189ecc9726ebbb5b3259bb43761b02",
                "md5": "818e041e543339df194781a461470bf7",
                "sha256": "fb9a072e01ce4d2a2eaab791db4159144af1cfeebdec931db0b60ec2f471fd59"
            },
            "downloads": -1,
            "filename": "adapt-parser-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "818e041e543339df194781a461470bf7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 23213,
            "upload_time": "2021-09-29T02:25:57",
            "upload_time_iso_8601": "2021-09-29T02:25:57.897234Z",
            "url": "https://files.pythonhosted.org/packages/ff/97/236a8cf280b789a86a7e5b50d3602e189ecc9726ebbb5b3259bb43761b02/adapt-parser-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2021-09-29 02:25:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MycroftAI",
    "github_project": "adapt",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "six",
            "specs": [
                [
                    ">=",
                    "1.10.0"
                ]
            ]
        }
    ],
    "lcname": "adapt-parser"
}
        
Elapsed time: 0.44412s