# adcc: Seamlessly connect your program to ADC
| **Documentation** | [![][docs-img]][docs-url] [![][binder-img]][binder-url] |
| :------ | :------- |
| **Build Status** | [![][ci-img]][ci-url] [![][cov-img]][cov-url] [![][lgtm-img]][lgtm-url] |
| **Installation** | [![][pypi-img]][pypi-url] [![][conda-img]][conda-url] [![][license-img]][license-url] |
[docs-img]: https://img.shields.io/badge/doc-latest-blue.svg
[docs-url]: https://adc-connect.org
[binder-img]: https://mybinder.org/badge_logo.svg
[binder-url]: https://try.adc-connect.org
[ci-img]: https://github.com/adc-connect/adcc/workflows/CI/badge.svg?branch=master&event=push
[ci-url]: https://github.com/adc-connect/adcc/actions
[cov-img]: https://coveralls.io/repos/adc-connect/adcc/badge.svg?branch=master&service=github
[cov-url]: https://coveralls.io/github/adc-connect/adcc?branch=master
[license-img]: https://img.shields.io/badge/License-GPL%20v3-blue.svg
[license-url]: https://github.com/adc-connect/adcc/blob/master/LICENSE
[pypi-img]: https://img.shields.io/pypi/v/adcc
[pypi-url]: https://pypi.org/project/adcc
[conda-img]: https://anaconda.org/conda-forge/adcc/badges/version.svg
[conda-url]: https://anaconda.org/conda-forge/adcc
[lgtm-img]: https://img.shields.io/lgtm/grade/python/github/adc-connect/adcc?label=code%20quality
[lgtm-url]: https://lgtm.com/projects/g/adc-connect/adcc/context:python
adcc (**ADC-connect**) is a Python-based framework for calculating molecular spectra and electronically excited states
with the algebraic-diagrammatic construction (ADC) approach.
Arbitrary host programs may be used to supply a
self-consistent field (SCF) reference to start off the ADC calculation.
Currently adcc comes with ready-to-use interfaces to four programs: PySCF, Psi4, VeloxChem and molsturm.
Adding other SCF codes or
starting a calculation from
statically computed data can be easily achieved.
Try adcc in your browser at https://try.adc-connect.org
or take a look at the [adcc documentation](https://adc-connect.org)
for more details and installation instructions.
## Citation
**Paper:** | [![](https://img.shields.io/badge/DOI-10.1002/wcms.1462-blue)](https://doi.org/10.1002/wcms.1462)
-----------| --------------------------------------------------------------------------------------------------------
**Code:** | [![DOI](https://zenodo.org/badge/215731857.svg)](https://zenodo.org/badge/latestdoi/215731857)
If you use adcc, please cite
[our paper in WIREs Computational Molecular Science](https://doi.org/10.1002/wcms.1462).
A preprint can be found
[on HAL](https://hal.archives-ouvertes.fr/hal-02319517)
or [on arXiv](http://arxiv.org/pdf/1910.07757).
Raw data
{
"_id": null,
"home_page": "https://adc-connect.org",
"name": "adcc",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "ADC,algebraic-diagrammatic,construction,excited,states,electronic,structure,computational,chemistry,quantum,spectroscopy",
"author": "Michael F. Herbst, Maximilian Scheurer, Jonas Leitner, Antonia Papapostolou",
"author_email": "developers@adc-connect.org",
"download_url": "https://files.pythonhosted.org/packages/4e/a9/ed89bfb0d0d287de9456f4ace05b7d7f38150851ffa4b227157e456f7ddf/adcc-0.15.17.tar.gz",
"platform": "Linux",
"description": "\n# adcc: Seamlessly connect your program to ADC \n| **Documentation** | [![][docs-img]][docs-url] [![][binder-img]][binder-url] |\n| :------ | :------- |\n| **Build Status** | [![][ci-img]][ci-url] [![][cov-img]][cov-url] [![][lgtm-img]][lgtm-url] |\n| **Installation** | [![][pypi-img]][pypi-url] [![][conda-img]][conda-url] [![][license-img]][license-url] |\n\n[docs-img]: https://img.shields.io/badge/doc-latest-blue.svg\n[docs-url]: https://adc-connect.org\n[binder-img]: https://mybinder.org/badge_logo.svg\n[binder-url]: https://try.adc-connect.org\n[ci-img]: https://github.com/adc-connect/adcc/workflows/CI/badge.svg?branch=master&event=push\n[ci-url]: https://github.com/adc-connect/adcc/actions\n[cov-img]: https://coveralls.io/repos/adc-connect/adcc/badge.svg?branch=master&service=github\n[cov-url]: https://coveralls.io/github/adc-connect/adcc?branch=master\n[license-img]: https://img.shields.io/badge/License-GPL%20v3-blue.svg\n[license-url]: https://github.com/adc-connect/adcc/blob/master/LICENSE\n[pypi-img]: https://img.shields.io/pypi/v/adcc\n[pypi-url]: https://pypi.org/project/adcc\n[conda-img]: https://anaconda.org/conda-forge/adcc/badges/version.svg\n[conda-url]: https://anaconda.org/conda-forge/adcc\n[lgtm-img]: https://img.shields.io/lgtm/grade/python/github/adc-connect/adcc?label=code%20quality\n[lgtm-url]: https://lgtm.com/projects/g/adc-connect/adcc/context:python\n\nadcc (**ADC-connect**) is a Python-based framework for calculating molecular spectra and electronically excited states\nwith the algebraic-diagrammatic construction (ADC) approach.\n\nArbitrary host programs may be used to supply a\nself-consistent field (SCF) reference to start off the ADC calculation.\nCurrently adcc comes with ready-to-use interfaces to four programs: PySCF, Psi4, VeloxChem and molsturm.\nAdding other SCF codes or\nstarting a calculation from\nstatically computed data can be easily achieved.\n\nTry adcc in your browser at https://try.adc-connect.org\nor take a look at the [adcc documentation](https://adc-connect.org)\nfor more details and installation instructions.\n\n## Citation\n\n**Paper:** | [![](https://img.shields.io/badge/DOI-10.1002/wcms.1462-blue)](https://doi.org/10.1002/wcms.1462)\n-----------| --------------------------------------------------------------------------------------------------------\n**Code:** | [![DOI](https://zenodo.org/badge/215731857.svg)](https://zenodo.org/badge/latestdoi/215731857)\n\nIf you use adcc, please cite\n[our paper in WIREs Computational Molecular Science](https://doi.org/10.1002/wcms.1462).\nA preprint can be found\n[on HAL](https://hal.archives-ouvertes.fr/hal-02319517)\nor [on arXiv](http://arxiv.org/pdf/1910.07757).\n\n\n",
"bugtrack_url": null,
"license": "GPL v3",
"summary": "adcc: Seamlessly connect your host program to ADC",
"version": "0.15.17",
"project_urls": {
"Homepage": "https://adc-connect.org",
"Issues": "https://github.com/adc-connect/adcc/issues",
"Source": "https://github.com/adc-connect/adcc"
},
"split_keywords": [
"adc",
"algebraic-diagrammatic",
"construction",
"excited",
"states",
"electronic",
"structure",
"computational",
"chemistry",
"quantum",
"spectroscopy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4ea9ed89bfb0d0d287de9456f4ace05b7d7f38150851ffa4b227157e456f7ddf",
"md5": "c95a314a19cc566ef2c2e3678fa35b69",
"sha256": "c32313dd782b2aead1b726360f37b797e4721506bfdfbc6d2878840fa8571ad3"
},
"downloads": -1,
"filename": "adcc-0.15.17.tar.gz",
"has_sig": false,
"md5_digest": "c95a314a19cc566ef2c2e3678fa35b69",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 230886,
"upload_time": "2023-06-08T12:19:52",
"upload_time_iso_8601": "2023-06-08T12:19:52.973859Z",
"url": "https://files.pythonhosted.org/packages/4e/a9/ed89bfb0d0d287de9456f4ace05b7d7f38150851ffa4b227157e456f7ddf/adcc-0.15.17.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-08 12:19:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "adc-connect",
"github_project": "adcc",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "adcc"
}