<div align='center'>
<img height='180px' width='420px' src='https://github.com/reinanbr/adriana/blob/main/logo.jpg?raw=true'>
<p> A powerfull lib, for development in machine learning</p>
<a href='#'><img alt="CodeFactor Grade" src="https://img.shields.io/codefactor/grade/github/reinanbr/dreams?logo=codefactor">
</a><img alt="CircleCI" src="https://img.shields.io/circleci/build/github/reinanbr/dreams">
<img alt="Code Climate maintainability" src="https://img.shields.io/codeclimate/maintainability-percentage/reinanbr/dreams">
<!--
<br/>
<a href='https://pypi.org/project/dreams/'><img src='https://img.shields.io/pypi/v/dreams'></a>
<a href='#'><img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/dreams"></a>
<br/>
<img alt="PyPI - License" src="https://img.shields.io/pypi/l/dreams?color=orange">
<img alt="GitHub Pipenv locked Python version" src="https://img.shields.io/github/pipenv/locked/python-version/reinanbr/dreams"> -->
<!-- redes sociais -->
<br/>
<a href='https://instagram.com/reysofts/'><img src='https://shields.io/badge/insta-reysofts-darkviolet?logo=instagram&style=flat'></a>
</div>
<br>
<a href="https://www.buymeacoffee.com/ReinanBr" target="_blank"><img height='30px' widht='100px' src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 30px !important;width: 100px !important;" ></a>
<hr>
## Install:
```sh
$ pip install adrianna -U
```
## Examples:
### Bases
#### Neuro V1 (binary)
```py
from adrianna.neuro.base_v1 import NeuralNetwork
import numpy as np
# Exemplo de uso
if __name__ == "__main__":
# Dados de entrada e saída
X = np.array([[3, 1, 2], [1, 24, 5], [2, 42, 5], [2, 23, 3]])
y = np.array([[1], [0], [1], [0]])
# Criação e treinamento da rede neural
input_size = X.shape[1] # Número de colunas das listas
hidden_size = 4 # Número de neurônios na camada oculta
output_size = y.shape[1] # Número de saídas
neural_net = NeuralNetwork(input_size, hidden_size, output_size, learning_rate=0.1)
neural_net.train(X, y, epochs=10000)
# Fazendo previsões
predictions = neural_net.predict(X)
predictions = np.round(predictions).astype(int)
print("Predictions:")
print(predictions)
```
Results:
```sh
...
Epoch 8000, Loss: 0.2617957
Epoch 8100, Loss: 0.1830651
Epoch 8200, Loss: 0.1800935
Epoch 8300, Loss: 0.2585192
Epoch 8400, Loss: 0.3310709
Epoch 8500, Loss: 0.3215849
Epoch 8600, Loss: 0.1803035
Epoch 8700, Loss: 0.1802555
Epoch 8800, Loss: 0.1807692
Epoch 8900, Loss: 0.3312975
Epoch 9000, Loss: 0.1800601
Epoch 9100, Loss: 0.2642676
Epoch 9200, Loss: 0.1930688
Epoch 9300, Loss: 0.3279387
Epoch 9400, Loss: 0.1871483
Epoch 9500, Loss: 0.1809427
Epoch 9600, Loss: 0.2635577
Epoch 9700, Loss: 0.1855325
Epoch 9800, Loss: 0.1796770
Epoch 9900, Loss: 0.1800897
Predictions:
[[1]
[0]
[1]
[1]]
```
<img src='https://reysofts.com.br/apis/engine/libs/analisys_lib.php?lib_name=adrianna'>
Raw data
{
"_id": null,
"home_page": "https://github.com/reinanbr/adriana",
"name": "adrianna",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "ia machine learning math",
"author": "Reinan Br",
"author_email": "slimchatuba@gmail.com",
"download_url": "",
"platform": null,
"description": " <div align='center'>\n\n <img height='180px' width='420px' src='https://github.com/reinanbr/adriana/blob/main/logo.jpg?raw=true'>\n\n\n<p> A powerfull lib, for development in machine learning</p>\n<a href='#'><img alt=\"CodeFactor Grade\" src=\"https://img.shields.io/codefactor/grade/github/reinanbr/dreams?logo=codefactor\">\n</a><img alt=\"CircleCI\" src=\"https://img.shields.io/circleci/build/github/reinanbr/dreams\">\n<img alt=\"Code Climate maintainability\" src=\"https://img.shields.io/codeclimate/maintainability-percentage/reinanbr/dreams\">\n<!-- \n<br/>\n<a href='https://pypi.org/project/dreams/'><img src='https://img.shields.io/pypi/v/dreams'></a>\n<a href='#'><img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/dreams\"></a>\n<br/>\n<img alt=\"PyPI - License\" src=\"https://img.shields.io/pypi/l/dreams?color=orange\">\n<img alt=\"GitHub Pipenv locked Python version\" src=\"https://img.shields.io/github/pipenv/locked/python-version/reinanbr/dreams\"> -->\n\n\n<!-- redes sociais -->\n<br/>\n<a href='https://instagram.com/reysofts/'><img src='https://shields.io/badge/insta-reysofts-darkviolet?logo=instagram&style=flat'></a>\n</div>\n\n<br>\n\n<a href=\"https://www.buymeacoffee.com/ReinanBr\" target=\"_blank\"><img height='30px' widht='100px' src=\"https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png\" alt=\"Buy Me A Coffee\" style=\"height: 30px !important;width: 100px !important;\" ></a>\n\n<hr>\n\n## Install:\n\n```sh\n$ pip install adrianna -U\n```\n\n## Examples:\n\n### Bases\n\n#### Neuro V1 (binary)\n\n```py\n\nfrom adrianna.neuro.base_v1 import NeuralNetwork\nimport numpy as np\n\n\n# Exemplo de uso\nif __name__ == \"__main__\":\n # Dados de entrada e sa\u00edda\n X = np.array([[3, 1, 2], [1, 24, 5], [2, 42, 5], [2, 23, 3]])\n y = np.array([[1], [0], [1], [0]])\n \n # Cria\u00e7\u00e3o e treinamento da rede neural\n input_size = X.shape[1] # N\u00famero de colunas das listas\n hidden_size = 4 # N\u00famero de neur\u00f4nios na camada oculta\n output_size = y.shape[1] # N\u00famero de sa\u00eddas\n \n neural_net = NeuralNetwork(input_size, hidden_size, output_size, learning_rate=0.1)\n neural_net.train(X, y, epochs=10000)\n \n # Fazendo previs\u00f5es\n predictions = neural_net.predict(X)\n predictions = np.round(predictions).astype(int)\n print(\"Predictions:\")\n print(predictions)\n\n```\nResults:\n\n```sh\n...\nEpoch 8000, Loss: 0.2617957\nEpoch 8100, Loss: 0.1830651\nEpoch 8200, Loss: 0.1800935\nEpoch 8300, Loss: 0.2585192\nEpoch 8400, Loss: 0.3310709\nEpoch 8500, Loss: 0.3215849\nEpoch 8600, Loss: 0.1803035\nEpoch 8700, Loss: 0.1802555\nEpoch 8800, Loss: 0.1807692\nEpoch 8900, Loss: 0.3312975\nEpoch 9000, Loss: 0.1800601\nEpoch 9100, Loss: 0.2642676\nEpoch 9200, Loss: 0.1930688\nEpoch 9300, Loss: 0.3279387\nEpoch 9400, Loss: 0.1871483\nEpoch 9500, Loss: 0.1809427\nEpoch 9600, Loss: 0.2635577\nEpoch 9700, Loss: 0.1855325\nEpoch 9800, Loss: 0.1796770\nEpoch 9900, Loss: 0.1800897\n\nPredictions:\n[[1]\n [0]\n [1]\n [1]]\n\n\n```\n\n<img src='https://reysofts.com.br/apis/engine/libs/analisys_lib.php?lib_name=adrianna'>\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "lib for development with machine learning",
"version": "0.0.7.2",
"project_urls": {
"Homepage": "https://github.com/reinanbr/adriana"
},
"split_keywords": [
"ia",
"machine",
"learning",
"math"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8fcd16cc97df4e9e2fc54916dc2a5913b9e448bdba703ba328c87230fcef4f55",
"md5": "aa03e1024808f90d19f9c5fb978c1119",
"sha256": "aa9669d7c35d9b9c7a863f31d29bb517c62117aeeb5aae2cbf31c991c6f631b7"
},
"downloads": -1,
"filename": "adrianna-0.0.7.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "aa03e1024808f90d19f9c5fb978c1119",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3555,
"upload_time": "2023-12-07T18:25:06",
"upload_time_iso_8601": "2023-12-07T18:25:06.298474Z",
"url": "https://files.pythonhosted.org/packages/8f/cd/16cc97df4e9e2fc54916dc2a5913b9e448bdba703ba328c87230fcef4f55/adrianna-0.0.7.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-07 18:25:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "reinanbr",
"github_project": "adriana",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "adrianna"
}