Aequitas is an open-source bias audit toolkit for data scientists, machine learning researchers, and policymakers to audit machine learning models for discrimination and bias, and to make informed and equitable decisions around developing and deploying predictive tools.
Raw data
{
"_id": null,
"home_page": "https://github.com/dssg/aequitas",
"name": "aequitas-lite",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "fairness bias aequitas",
"author": "Center for Data Science and Public Policy",
"author_email": "datascifellows@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/02/e0/4c24acc2af41b32678b207496d5f408b6efbfe68fe4d3fdb0d6685c43ad6/aequitas-lite-0.43.5.tar.gz",
"platform": null,
"description": "\nAequitas is an open-source bias audit toolkit for data scientists, machine learning researchers, and policymakers to audit machine learning models for discrimination and bias, and to make informed and equitable decisions around developing and deploying predictive tools.\n\n",
"bugtrack_url": null,
"license": "https://github.com/dssg/aequitas/blob/master/LICENSE",
"summary": "The bias and fairness audit toolkit.",
"version": "0.43.5",
"split_keywords": [
"fairness",
"bias",
"aequitas"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "23d072763e83e6dbc6fc091b4d7f6135941c06883b30b5454939f7a6c4336d57",
"md5": "63f3415261d184fb93b6f415ccb9eb0c",
"sha256": "8a41565bbeff051534f4a7abae82eac9636761950c0eeb5408876e510011197c"
},
"downloads": -1,
"filename": "aequitas_lite-0.43.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "63f3415261d184fb93b6f415ccb9eb0c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 69102,
"upload_time": "2023-03-24T15:40:02",
"upload_time_iso_8601": "2023-03-24T15:40:02.308558Z",
"url": "https://files.pythonhosted.org/packages/23/d0/72763e83e6dbc6fc091b4d7f6135941c06883b30b5454939f7a6c4336d57/aequitas_lite-0.43.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "02e04c24acc2af41b32678b207496d5f408b6efbfe68fe4d3fdb0d6685c43ad6",
"md5": "0f9562f17262e15153371641aac49cc2",
"sha256": "33a21c6c65b87bbe21d0faf4c3b4f71e2bb6cf9dc2b81a7bb8c9d8b31c2250b2"
},
"downloads": -1,
"filename": "aequitas-lite-0.43.5.tar.gz",
"has_sig": false,
"md5_digest": "0f9562f17262e15153371641aac49cc2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 62016,
"upload_time": "2023-03-24T15:40:04",
"upload_time_iso_8601": "2023-03-24T15:40:04.955515Z",
"url": "https://files.pythonhosted.org/packages/02/e0/4c24acc2af41b32678b207496d5f408b6efbfe68fe4d3fdb0d6685c43ad6/aequitas-lite-0.43.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-24 15:40:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "dssg",
"github_project": "aequitas",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "aequitas-lite"
}