# Aerospike Vector Search Client Python
Python client for Aerospike Vector Search Database
## Prerequisites
- Python 3.9 or higher
- pip version 9.0.1 or higher
- Aerospike Vector Search DB and Aerospike clusters running.
## Using the client from your application using pip
To resolve the client packages using pip, add the following to $HOME/.pip/pip.conf
```ini
[global]
extra-index-url=https://<jfrog-username>:<jfrog-access-token>@aerospike.jfrog.io/artifactory/api/pypi/ecosystem-python-dev-local/simple
```
### Install the aerospike_vector_search using pip
```shell
python3 -m pip install aerospike-vector-search
```
Or
You can add the package name `aerospike-vector-search` to your application's `requirements.txt` and install all dependencies using
```shell
python3 -m pip install -r requirements.txt
```
**Note**
This project makes use of the warnings module to communicate deprecations and upcoming changes.
Run your project with the `-Wd` or Python flag or the `PYTHONWARNINGS=default` environment variable to display relevant warnings.
## Building the client
### Setup build Python Virtual Environment
This is the recommended mode for building the python client.
```shell
# Create virtual environment to isolate dependencies.
python3 -m venv .venv
source .venv/bin/activate
```
### Install requirements
```shell
python3 -m pip install -vvv -r requirements.txt
```
### Generate gRPC client code
```shell
# Generate the gRPC client code
./proto/codegen.sh
```
### Build the package
```shell
python3 -m pip install build
python3 -m build
```
## Examples
See [examples](https://github.com/aerospike/proximus-examples) for working samples.
Raw data
{
"_id": null,
"home_page": null,
"name": "aerospike-vector-search",
"maintainer": null,
"docs_url": null,
"requires_python": ">3.8",
"maintainer_email": null,
"keywords": "aerospike, vector, database, ANN",
"author": null,
"author_email": "\"Aerospike, Inc.\" <info@aerospike.com>",
"download_url": "https://files.pythonhosted.org/packages/c4/06/2dae10debe5314d288db978c5dcb45978ed19581ac13e7bd29885b693ff3/aerospike_vector_search-3.1.0.tar.gz",
"platform": null,
"description": "# Aerospike Vector Search Client Python\nPython client for Aerospike Vector Search Database\n\n## Prerequisites\n - Python 3.9 or higher\n - pip version 9.0.1 or higher\n - Aerospike Vector Search DB and Aerospike clusters running.\n\n\n## Using the client from your application using pip\nTo resolve the client packages using pip, add the following to $HOME/.pip/pip.conf\n\n```ini\n[global]\nextra-index-url=https://<jfrog-username>:<jfrog-access-token>@aerospike.jfrog.io/artifactory/api/pypi/ecosystem-python-dev-local/simple \n```\n\n### Install the aerospike_vector_search using pip\n```shell\npython3 -m pip install aerospike-vector-search\n```\nOr \n\nYou can add the package name `aerospike-vector-search` to your application's `requirements.txt` and install all dependencies using\n```shell\npython3 -m pip install -r requirements.txt\n```\n\n**Note**\nThis project makes use of the warnings module to communicate deprecations and upcoming changes.\nRun your project with the `-Wd` or Python flag or the `PYTHONWARNINGS=default` environment variable to display relevant warnings.\n\n## Building the client\n### Setup build Python Virtual Environment\nThis is the recommended mode for building the python client.\n\n```shell\n# Create virtual environment to isolate dependencies.\npython3 -m venv .venv\nsource .venv/bin/activate\n```\n\n### Install requirements\n```shell\npython3 -m pip install -vvv -r requirements.txt\n```\n\n### Generate gRPC client code\n```shell\n# Generate the gRPC client code\n./proto/codegen.sh\n```\n\n### Build the package\n```shell\npython3 -m pip install build\npython3 -m build\n```\n\n## Examples\n\nSee [examples](https://github.com/aerospike/proximus-examples) for working samples.\n",
"bugtrack_url": null,
"license": "Apache Software License",
"summary": "Aerospike Vector Search Client Library for Python",
"version": "3.1.0",
"project_urls": {
"Homepage": "https://aerospike.com"
},
"split_keywords": [
"aerospike",
" vector",
" database",
" ann"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7d7060efbfa464af5833caba60f8163013d5dc15c67fcb10d7296258fd84af78",
"md5": "16e4baf3a55d9adec62e15a8fcc02ee3",
"sha256": "5d61ef6956b7b0569009c066f8f3f202cf896fdf4149358d513006a690530cbe"
},
"downloads": -1,
"filename": "aerospike_vector_search-3.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "16e4baf3a55d9adec62e15a8fcc02ee3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">3.8",
"size": 68156,
"upload_time": "2024-12-16T20:09:47",
"upload_time_iso_8601": "2024-12-16T20:09:47.687811Z",
"url": "https://files.pythonhosted.org/packages/7d/70/60efbfa464af5833caba60f8163013d5dc15c67fcb10d7296258fd84af78/aerospike_vector_search-3.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c4062dae10debe5314d288db978c5dcb45978ed19581ac13e7bd29885b693ff3",
"md5": "7eac1557591f83f98be733bf485b77b9",
"sha256": "2a8a27e56b7fe4916856cdb99d9e288809e17c0ec5dce9f8851d9f81522d099b"
},
"downloads": -1,
"filename": "aerospike_vector_search-3.1.0.tar.gz",
"has_sig": false,
"md5_digest": "7eac1557591f83f98be733bf485b77b9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">3.8",
"size": 51641,
"upload_time": "2024-12-16T20:09:50",
"upload_time_iso_8601": "2024-12-16T20:09:50.060777Z",
"url": "https://files.pythonhosted.org/packages/c4/06/2dae10debe5314d288db978c5dcb45978ed19581ac13e7bd29885b693ff3/aerospike_vector_search-3.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-16 20:09:50",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "aerospike-vector-search"
}