Name | agentlib-mpc JSON |
Version |
0.6.4
JSON |
| download |
home_page | None |
Summary | Framework for development and execution of agents for control and simulation of energy systems. |
upload_time | 2024-12-17 13:31:07 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | BSD-3-Clause |
keywords |
agents
mpc
control
distributed
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# agentlib_mpc
[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
[![pylint](https://rwth-ebc.github.io/AgentLib-MPC/main/pylint/pylint.svg)](https://rwth-ebc.github.io/AgentLib-MPC/main/pylint/pylint.html)
[![documentation](https://rwth-ebc.github.io/AgentLib-MPC/main/docs/doc.svg)](https://rwth-ebc.github.io/AgentLib-MPC/main/docs/index.html)
This is a plugin for [AgentLib](https://github.com/RWTH-EBC/AgentLib).
Includes functions for modeling with [CasADi](https://web.casadi.org/), and using those models in nonlinear MPC, central and distributed (based on ADMM).
See examples and the tutorial in the docs.
Best example to start is an MPC for [a single air conditioned room](https://github.com/RWTH-EBC/AgentLib-MPC/blob/main/examples/one_room_mpc/physical/simple_mpc.py).
## Installation
Install with:
```
pip install agentlib_mpc
```
To install with full dependencies (recommended), run:
```
pip install agentlib_mpc[full]
```
## Optional Dependencies
AgentLib_MPC has a number of optional dependencies:
- **fmu**: Support simulation of FMU models (https://fmi-standard.org/).
- **ml**: Use machine learning based NARX models for MPC. Currently supports neural networks, gaussian process regression and linear regression. Installs tensorflow, keras and scikit-learn.
- **interactive**: Utility functions for displaying mpc results in an interactive dashboard. Installs plotly and dash.
Install these like
````
pip install agentlib_mpc[ml]
````
## Citing AgentLib_MPC
For now, please cite the base framework under https://github.com/RWTH-EBC/AgentLib.
A preprint is available under http://dx.doi.org/10.2139/ssrn.4884846 and can be cited as:
> Eser, Steffen and Storek, Thomas and Wüllhorst, Fabian and Dähling, Stefan and Gall, Jan and Stoffel, Phillip and Müller, Dirk, A Modular Python Framework for Rapid Development of Advanced Control Algorithms for Energy Systems. Available at SSRN: https://ssrn.com/abstract=4884846 or http://dx.doi.org/10.2139/ssrn.4884846
When using AgentLib-MPC, please remember to cite other tools that you are using, for example CasADi or IPOPT.
## Acknowledgments
We gratefully acknowledge the financial support by Federal Ministry \\ for Economic Affairs and Climate Action (BMWK), promotional reference 03ET1495A.
<img src="./docs/source/images/BMWK_logo.png" alt="BMWK" width="200"/>
Raw data
{
"_id": null,
"home_page": null,
"name": "agentlib-mpc",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "agents, mpc, control, distributed",
"author": null,
"author_email": "Associates of the AGENT project <AGENT.Projekt@eonerc.rwth-aachen.de>",
"download_url": "https://files.pythonhosted.org/packages/6a/78/e78651c7c49435e9f31053e1b99408eb090393ae62ca180398687d49997c/agentlib_mpc-0.6.4.tar.gz",
"platform": null,
"description": "# agentlib_mpc\n[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)\n[![pylint](https://rwth-ebc.github.io/AgentLib-MPC/main/pylint/pylint.svg)](https://rwth-ebc.github.io/AgentLib-MPC/main/pylint/pylint.html)\n[![documentation](https://rwth-ebc.github.io/AgentLib-MPC/main/docs/doc.svg)](https://rwth-ebc.github.io/AgentLib-MPC/main/docs/index.html)\n\nThis is a plugin for [AgentLib](https://github.com/RWTH-EBC/AgentLib). \nIncludes functions for modeling with [CasADi](https://web.casadi.org/), and using those models in nonlinear MPC, central and distributed (based on ADMM).\n\nSee examples and the tutorial in the docs.\nBest example to start is an MPC for [a single air conditioned room](https://github.com/RWTH-EBC/AgentLib-MPC/blob/main/examples/one_room_mpc/physical/simple_mpc.py).\n\n\n## Installation\n\nInstall with:\n\n```\npip install agentlib_mpc\n```\n\nTo install with full dependencies (recommended), run:\n```\npip install agentlib_mpc[full]\n```\n\n\n\n## Optional Dependencies\nAgentLib_MPC has a number of optional dependencies:\n \n - **fmu**: Support simulation of FMU models (https://fmi-standard.org/).\n - **ml**: Use machine learning based NARX models for MPC. Currently supports neural networks, gaussian process regression and linear regression. Installs tensorflow, keras and scikit-learn.\n - **interactive**: Utility functions for displaying mpc results in an interactive dashboard. Installs plotly and dash.\n\nInstall these like \n````\npip install agentlib_mpc[ml]\n````\n\n\n## Citing AgentLib_MPC\n\nFor now, please cite the base framework under https://github.com/RWTH-EBC/AgentLib.\n\nA preprint is available under http://dx.doi.org/10.2139/ssrn.4884846 and can be cited as: \n\n> Eser, Steffen and Storek, Thomas and W\u00fcllhorst, Fabian and D\u00e4hling, Stefan and Gall, Jan and Stoffel, Phillip and M\u00fcller, Dirk, A Modular Python Framework for Rapid Development of Advanced Control Algorithms for Energy Systems. Available at SSRN: https://ssrn.com/abstract=4884846 or http://dx.doi.org/10.2139/ssrn.4884846 \n\nWhen using AgentLib-MPC, please remember to cite other tools that you are using, for example CasADi or IPOPT.\n\n## Acknowledgments\n\nWe gratefully acknowledge the financial support by Federal Ministry \\\\ for Economic Affairs and Climate Action (BMWK), promotional reference 03ET1495A.\n\n<img src=\"./docs/source/images/BMWK_logo.png\" alt=\"BMWK\" width=\"200\"/>\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Framework for development and execution of agents for control and simulation of energy systems.",
"version": "0.6.4",
"project_urls": null,
"split_keywords": [
"agents",
" mpc",
" control",
" distributed"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a23712bdc63605573f339a54e1a7d0254f76fdcc343b0fb259c5b1a90482aa4e",
"md5": "5e6099af2897decb5906c32b2b5855ee",
"sha256": "fda6444f16d03dfccd056181531f8bff2bed6dc8db8dfabba4be81479118ea4a"
},
"downloads": -1,
"filename": "agentlib_mpc-0.6.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5e6099af2897decb5906c32b2b5855ee",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 171767,
"upload_time": "2024-12-17T13:31:04",
"upload_time_iso_8601": "2024-12-17T13:31:04.097655Z",
"url": "https://files.pythonhosted.org/packages/a2/37/12bdc63605573f339a54e1a7d0254f76fdcc343b0fb259c5b1a90482aa4e/agentlib_mpc-0.6.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6a78e78651c7c49435e9f31053e1b99408eb090393ae62ca180398687d49997c",
"md5": "9486e01dd82f060647ff619344e34f22",
"sha256": "577b19dc01c72fec8b5a022ea9ce39f39cfc052be78282707e1c78738b7fe0c8"
},
"downloads": -1,
"filename": "agentlib_mpc-0.6.4.tar.gz",
"has_sig": false,
"md5_digest": "9486e01dd82f060647ff619344e34f22",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 474389,
"upload_time": "2024-12-17T13:31:07",
"upload_time_iso_8601": "2024-12-17T13:31:07.957932Z",
"url": "https://files.pythonhosted.org/packages/6a/78/e78651c7c49435e9f31053e1b99408eb090393ae62ca180398687d49997c/agentlib_mpc-0.6.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-17 13:31:07",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "agentlib-mpc"
}