aggressor


Nameaggressor JSON
Version 0.0.1a0 PyPI version JSON
download
home_pagehttps://github.com/JosefAlbers/Aggressor
SummaryUltra-minimal autoregressive diffusion model for image generation
upload_time2024-09-19 04:17:46
maintainerNone
docs_urlNone
authorJosef Albers
requires_python>=3.12.3
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Aggressor: Ultra-minimal autoregressive diffusion model for image generation

A simplest possible implementation of [Autoregressive Image Generation without Vector Quantization](https://arxiv.org/abs/2406.11838).

## Key Features

- **Simple Architecture**: A tiny transformer for autoregression and an MLP for diffusion.
- **Single-File Implementation**: Entire model in one Python file.
- **Minimal Dependencies**: Built from scratch using only basic MLX operations.

## Components

- `Aggressor`: Main model class combining transformer and diffusion.
- `Transformer`: Multi-layer transformer with attention and MLP blocks.
- `Denoiser`: MLP-based diffusion process with time embedding.
- `Scheduler`: Handles forward and backward processes for diffusion.
- `Attention`: Multi-head attention mechanism.
- `MLP`: Basic multi-layer perceptron with SiLU activation.

## Usage

```zsh
python aggressor.py
```

![Alt text](https://raw.githubusercontent.com/JosefAlbers/Aggressor/main/assets/aggressor_cifar.png)

![Alt text](https://raw.githubusercontent.com/JosefAlbers/Aggressor/main/assets/aggressor_mnist.png)

*(Training on 60000 images x 20 epochs takes approximately 7~8 minutes on 8GB M2 MacBook.)*

## Acknowledgements

Thanks to [lucidrains](https://github.com/lucidrains/autoregressive-diffusion-pytorch)' fantastic code that inspired this project. The official implementation is available [here](https://github.com/LTH14/mar).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JosefAlbers/Aggressor",
    "name": "aggressor",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12.3",
    "maintainer_email": null,
    "keywords": null,
    "author": "Josef Albers",
    "author_email": "albersj66@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b3/d6/0a82440e138b61f05b206853a8e7b926d9d6a42386a26d76821193ddfa00/aggressor-0.0.1a0.tar.gz",
    "platform": null,
    "description": "# Aggressor: Ultra-minimal autoregressive diffusion model for image generation\n\nA simplest possible implementation of [Autoregressive Image Generation without Vector Quantization](https://arxiv.org/abs/2406.11838).\n\n## Key Features\n\n- **Simple Architecture**: A tiny transformer for autoregression and an MLP for diffusion.\n- **Single-File Implementation**: Entire model in one Python file.\n- **Minimal Dependencies**: Built from scratch using only basic MLX operations.\n\n## Components\n\n- `Aggressor`: Main model class combining transformer and diffusion.\n- `Transformer`: Multi-layer transformer with attention and MLP blocks.\n- `Denoiser`: MLP-based diffusion process with time embedding.\n- `Scheduler`: Handles forward and backward processes for diffusion.\n- `Attention`: Multi-head attention mechanism.\n- `MLP`: Basic multi-layer perceptron with SiLU activation.\n\n## Usage\n\n```zsh\npython aggressor.py\n```\n\n![Alt text](https://raw.githubusercontent.com/JosefAlbers/Aggressor/main/assets/aggressor_cifar.png)\n\n![Alt text](https://raw.githubusercontent.com/JosefAlbers/Aggressor/main/assets/aggressor_mnist.png)\n\n*(Training on 60000 images x 20 epochs takes approximately 7~8 minutes on 8GB M2 MacBook.)*\n\n## Acknowledgements\n\nThanks to [lucidrains](https://github.com/lucidrains/autoregressive-diffusion-pytorch)' fantastic code that inspired this project. The official implementation is available [here](https://github.com/LTH14/mar).\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Ultra-minimal autoregressive diffusion model for image generation",
    "version": "0.0.1a0",
    "project_urls": {
        "Homepage": "https://github.com/JosefAlbers/Aggressor"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "50b0331aa22b0596181b7a38771df1b9ecda683e9ea700d2e018f16e4769fd01",
                "md5": "84b56ceea8f68d82c18073f987a47d72",
                "sha256": "3651c92cf797bf4bd4d4ee5b1582ab72739efc41475cef28d0872dd5581defba"
            },
            "downloads": -1,
            "filename": "aggressor-0.0.1a0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "84b56ceea8f68d82c18073f987a47d72",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12.3",
            "size": 5745,
            "upload_time": "2024-09-19T04:17:45",
            "upload_time_iso_8601": "2024-09-19T04:17:45.322890Z",
            "url": "https://files.pythonhosted.org/packages/50/b0/331aa22b0596181b7a38771df1b9ecda683e9ea700d2e018f16e4769fd01/aggressor-0.0.1a0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b3d60a82440e138b61f05b206853a8e7b926d9d6a42386a26d76821193ddfa00",
                "md5": "42228aee568a1cb3aa5a2d8d34a24e14",
                "sha256": "d2d48b8745f2159841956ecc3f21eafe963ecac9450f93ede3041dcf2ad77dd1"
            },
            "downloads": -1,
            "filename": "aggressor-0.0.1a0.tar.gz",
            "has_sig": false,
            "md5_digest": "42228aee568a1cb3aa5a2d8d34a24e14",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12.3",
            "size": 5619,
            "upload_time": "2024-09-19T04:17:46",
            "upload_time_iso_8601": "2024-09-19T04:17:46.788166Z",
            "url": "https://files.pythonhosted.org/packages/b3/d6/0a82440e138b61f05b206853a8e7b926d9d6a42386a26d76821193ddfa00/aggressor-0.0.1a0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-19 04:17:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JosefAlbers",
    "github_project": "Aggressor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "aggressor"
}
        
Elapsed time: 0.29299s