agilab


Nameagilab JSON
Version 0.8.17 PyPI version JSON
download
home_pageNone
SummaryAGILAB is a PyCharm‑integrated AI experimentation lab for engineering (requires PyCharm for full workflow)
upload_time2025-10-07 17:32:47
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords jupyter mlflow asyncio dask rapids streamlit distributed cython cluster dataframe dataset load balancing gen ai copilot agi pycharm datascience
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://img.shields.io/pypi/v/agilab.svg?color=informational)](https://pypi.org/project/agilab)
[![Supported Python Versions](https://img.shields.io/pypi/pyversions/agilab.svg)](https://pypi.org/project/agilab/)
[![License: BSD 3-Clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
[![pypi_dl](https://img.shields.io/pypi/dm/agilab)]()
[![tests](https://thalesgroup.github.io/agilab/tests.svg)](https://thalesgroup.github.io/agilab/tests.svg)
[![coverage](https://thalesgroup.github.io/agilab/coverage.svg)](https://thalesgroup.github.io/agilab/coverage.svg)
[![GitHub stars](https://img.shields.io/github/stars/ThalesGroup/agilab.svg)](https://github.com/ThalesGroup/agilab)
[![black](https://img.shields.io/badge/code%20style-black-000000.svg)]()
[![docs](https://img.shields.io/badge/docs-online-brightgreen.svg)](https://thalesgroup.github.io/agilab)
[![ORCID](https://img.shields.io/badge/ORCID-0009--0003--5375--368X-A6CE39?logo=orcid)](https://orcid.org/0009-0003-5375-368X)


# AGILAB Open Source Project

AGILAB [BSD license](https://github.com/ThalesGroup/agilab/blob/main/LICENSE) is a PyCharm‑integrated AI experimentation lab for engineering. It’s designed to help engineers quickly experiment with AI‑driven methods using the provided PyCharm run configurations and workflows. Note: full workflow assumes PyCharm IDE.
See [documentation](https://thalesgroup.github.io/agilab).

See also: CHANGELOG.md for recent changes.

## Install and Execution for end users

Quick run (no setup):

```bash
uvx -p 3.13 agilab
```

Managed workspace (project folder):

```bash
mkdir agi-space && cd agi-space
uv init --bare --no-workspace
uv add agilab
uv run agilab
```

## Install for developers

<details open> 
<summary>
    <strong> Linux and MacOs </strong>
</summary>

```bash
git clone https://github.com/ThalesGroup/agilab
cd agilab
./install.sh --openai-api-key "sk-your-api-key" --cluster-ssh-credentials "username[:password]"
```
</details>

<details> 
<summary>
    <strong>Windows</strong>
</summary>

```powershell
git clone https://github.com/ThalesGroup/agilab
cd agilabpush it
powershell.exe -ExecutionPolicy Bypass -File .\install.ps1 --openai-api-key "sk-your-api-key"
```
</details>

## AGILab Execution

### Linux and MacOS and Windows:

```bash
cd agilab/src/agilab
uv run agilab
```

## Notes for developers

- AgiEnv is a singleton. Use instance attributes (`env.apps_dir`, `env.logger`, etc.).
  Class attribute reads (e.g., `AgiEnv.apps_dir`) proxy to the singleton when initialised;
  methods/properties are not shadowed. A few helpers are pre‑init safe
  (`AgiEnv.set_env_var`, `AgiEnv.read_agilab_path`, `AgiEnv._build_env`, `AgiEnv.log_info`).

- Environment flags (replaces legacy `install_type`):
  - `env.is_source_env`: true when running from a source checkout.
  - `env.is_worker_env`: true in worker-only contexts (e.g., `wenv/*_worker`).
  - `env.is_local_worker`: helper flag for home‑scoped worker layouts.

- App constructors (templates + flight_project) ignore unknown kwargs when constructing
  their Pydantic `Args` models. This preserves strict validation while making constructors
  resilient to incidental extras. Configure verbosity via `AgiEnv(verbose=…)` or logging,
  not via app `Args`.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "agilab",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "jupyter, mlflow, asyncio, dask, rapids, streamlit, distributed, cython, cluster, dataframe, dataset, load balancing, gen ai, copilot, agi, pycharm, datascience",
    "author": null,
    "author_email": "Jean-Pierre Morard <focus@thalesgroup.com>",
    "download_url": null,
    "platform": null,
    "description": "[![PyPI version](https://img.shields.io/pypi/v/agilab.svg?color=informational)](https://pypi.org/project/agilab)\n[![Supported Python Versions](https://img.shields.io/pypi/pyversions/agilab.svg)](https://pypi.org/project/agilab/)\n[![License: BSD 3-Clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)\n[![pypi_dl](https://img.shields.io/pypi/dm/agilab)]()\n[![tests](https://thalesgroup.github.io/agilab/tests.svg)](https://thalesgroup.github.io/agilab/tests.svg)\n[![coverage](https://thalesgroup.github.io/agilab/coverage.svg)](https://thalesgroup.github.io/agilab/coverage.svg)\n[![GitHub stars](https://img.shields.io/github/stars/ThalesGroup/agilab.svg)](https://github.com/ThalesGroup/agilab)\n[![black](https://img.shields.io/badge/code%20style-black-000000.svg)]()\n[![docs](https://img.shields.io/badge/docs-online-brightgreen.svg)](https://thalesgroup.github.io/agilab)\n[![ORCID](https://img.shields.io/badge/ORCID-0009--0003--5375--368X-A6CE39?logo=orcid)](https://orcid.org/0009-0003-5375-368X)\n\n\n# AGILAB Open Source Project\n\nAGILAB [BSD license](https://github.com/ThalesGroup/agilab/blob/main/LICENSE) is a PyCharm\u2011integrated AI experimentation lab for engineering. It\u2019s designed to help engineers quickly experiment with AI\u2011driven methods using the provided PyCharm run configurations and workflows. Note: full workflow assumes PyCharm IDE.\nSee [documentation](https://thalesgroup.github.io/agilab).\n\nSee also: CHANGELOG.md for recent changes.\n\n## Install and Execution for end users\n\nQuick run (no setup):\n\n```bash\nuvx -p 3.13 agilab\n```\n\nManaged workspace (project folder):\n\n```bash\nmkdir agi-space && cd agi-space\nuv init --bare --no-workspace\nuv add agilab\nuv run agilab\n```\n\n## Install for developers\n\n<details open> \n<summary>\n    <strong> Linux and MacOs </strong>\n</summary>\n\n```bash\ngit clone https://github.com/ThalesGroup/agilab\ncd agilab\n./install.sh --openai-api-key \"sk-your-api-key\" --cluster-ssh-credentials \"username[:password]\"\n```\n</details>\n\n<details> \n<summary>\n    <strong>Windows</strong>\n</summary>\n\n```powershell\ngit clone https://github.com/ThalesGroup/agilab\ncd agilabpush it\npowershell.exe -ExecutionPolicy Bypass -File .\\install.ps1 --openai-api-key \"sk-your-api-key\"\n```\n</details>\n\n## AGILab Execution\n\n### Linux and MacOS and Windows:\n\n```bash\ncd agilab/src/agilab\nuv run agilab\n```\n\n## Notes for developers\n\n- AgiEnv is a singleton. Use instance attributes (`env.apps_dir`, `env.logger`, etc.).\n  Class attribute reads (e.g., `AgiEnv.apps_dir`) proxy to the singleton when initialised;\n  methods/properties are not shadowed. A few helpers are pre\u2011init safe\n  (`AgiEnv.set_env_var`, `AgiEnv.read_agilab_path`, `AgiEnv._build_env`, `AgiEnv.log_info`).\n\n- Environment flags (replaces legacy `install_type`):\n  - `env.is_source_env`: true when running from a source checkout.\n  - `env.is_worker_env`: true in worker-only contexts (e.g., `wenv/*_worker`).\n  - `env.is_local_worker`: helper flag for home\u2011scoped worker layouts.\n\n- App constructors (templates + flight_project) ignore unknown kwargs when constructing\n  their Pydantic `Args` models. This preserves strict validation while making constructors\n  resilient to incidental extras. Configure verbosity via `AgiEnv(verbose=\u2026)` or logging,\n  not via app `Args`.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AGILAB is a PyCharm\u2011integrated AI experimentation lab for engineering (requires PyCharm for full workflow)",
    "version": "0.8.17",
    "project_urls": {
        "Documentation": "https://thalesgroup.github.io/agilab",
        "Issues": "https://github.com/ThalesGroup/agilab/issues",
        "Source": "https://github.com/ThalesGroup/agilab"
    },
    "split_keywords": [
        "jupyter",
        " mlflow",
        " asyncio",
        " dask",
        " rapids",
        " streamlit",
        " distributed",
        " cython",
        " cluster",
        " dataframe",
        " dataset",
        " load balancing",
        " gen ai",
        " copilot",
        " agi",
        " pycharm",
        " datascience"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3d15ebfb53adaeba7a849ca98ef547bddcde648fa27ab485c38c754c79626751",
                "md5": "0c7e546da51a9519a088d9f411fa6c62",
                "sha256": "a78497ebc3aadcfee77e1874d70c58c10d495dc751c1083a08abf597317735fb"
            },
            "downloads": -1,
            "filename": "agilab-0.8.17-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0c7e546da51a9519a088d9f411fa6c62",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 775117,
            "upload_time": "2025-10-07T17:32:47",
            "upload_time_iso_8601": "2025-10-07T17:32:47.309304Z",
            "url": "https://files.pythonhosted.org/packages/3d/15/ebfb53adaeba7a849ca98ef547bddcde648fa27ab485c38c754c79626751/agilab-0.8.17-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-07 17:32:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ThalesGroup",
    "github_project": "agilab",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "agilab"
}
        
Elapsed time: 1.20323s