ai-alchemy


Nameai-alchemy JSON
Version 1.0.1 PyPI version JSON
download
home_pageNone
SummaryLightweight package for arbitrary data transformation and validation using AI models and first class python libraries like Pandas and Pydantic.
upload_time2024-06-03 01:48:18
maintainerNone
docs_urlNone
authorJosh Mogil
requires_python<4.0,>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AI Alchemy

AI Alchemy is a Python library that provides a convenient way to interact with AI models, such as OpenAI's GPT-3.5 Turbo, and perform transformations on data.

## Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

### Prerequisites

You need to have Python installed on your machine. You can download Python [here](https://www.python.org/downloads/).

### Installation

You can install AI Alchemy via pip:

```bash
pip install ai_alchemy
```

### Usage
Here's a basic example of how to use AI Alchemy:

```python
# Import necessary libraries
import os
import ai_alchemy
from ai_alchemy.ai import OpenAIWrapper
from pydantic import BaseModel

# Instantiate a wrapper for an AI model
openai = OpenAIWrapper(api_key=os.environ["OPENAI_API_KEY"], model="gpt-3.5-turbo")

# Define a Pydantic model
class User(BaseModel):
    name: str
    age: int

# Input data
data = "John Smith is 25 years old, five foot ten inches tall, and weighs 150 pounds."

# Use AI Alchemy to transform the data into a Pydantic model
model = ai_alchemy.cast.str_to_pydantic_model(data, openai, User)

# Now `model` is a `User` instance with `name` and `age` populated from `data`
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ai-alchemy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Josh Mogil",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e1/91/49505f1211289c4fc1b99530a1234bcebc79da984e5b322fedf9e18afd4e/ai_alchemy-1.0.1.tar.gz",
    "platform": null,
    "description": "# AI Alchemy\n\nAI Alchemy is a Python library that provides a convenient way to interact with AI models, such as OpenAI's GPT-3.5 Turbo, and perform transformations on data.\n\n## Getting Started\n\nThese instructions will get you a copy of the project up and running on your local machine for development and testing purposes.\n\n### Prerequisites\n\nYou need to have Python installed on your machine. You can download Python [here](https://www.python.org/downloads/).\n\n### Installation\n\nYou can install AI Alchemy via pip:\n\n```bash\npip install ai_alchemy\n```\n\n### Usage\nHere's a basic example of how to use AI Alchemy:\n\n```python\n# Import necessary libraries\nimport os\nimport ai_alchemy\nfrom ai_alchemy.ai import OpenAIWrapper\nfrom pydantic import BaseModel\n\n# Instantiate a wrapper for an AI model\nopenai = OpenAIWrapper(api_key=os.environ[\"OPENAI_API_KEY\"], model=\"gpt-3.5-turbo\")\n\n# Define a Pydantic model\nclass User(BaseModel):\n    name: str\n    age: int\n\n# Input data\ndata = \"John Smith is 25 years old, five foot ten inches tall, and weighs 150 pounds.\"\n\n# Use AI Alchemy to transform the data into a Pydantic model\nmodel = ai_alchemy.cast.str_to_pydantic_model(data, openai, User)\n\n# Now `model` is a `User` instance with `name` and `age` populated from `data`\n```",
    "bugtrack_url": null,
    "license": null,
    "summary": "Lightweight package for arbitrary data transformation and validation using AI models and first class python libraries like Pandas and Pydantic.",
    "version": "1.0.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d37f9da518e99bdb1a19bae27b4e1b58c15575ee5353ee05b656d4b2c5529f7c",
                "md5": "2fcb902947391971e44c4a5df99c1c17",
                "sha256": "ea2a3caf891a0397b29e8e90d5845cee251be7e9953a6ddaa9eb44400fabf720"
            },
            "downloads": -1,
            "filename": "ai_alchemy-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2fcb902947391971e44c4a5df99c1c17",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 5504,
            "upload_time": "2024-06-03T01:48:13",
            "upload_time_iso_8601": "2024-06-03T01:48:13.744491Z",
            "url": "https://files.pythonhosted.org/packages/d3/7f/9da518e99bdb1a19bae27b4e1b58c15575ee5353ee05b656d4b2c5529f7c/ai_alchemy-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e19149505f1211289c4fc1b99530a1234bcebc79da984e5b322fedf9e18afd4e",
                "md5": "fdb344386c3dd756266d516f5e6d2735",
                "sha256": "4f5c103ff18b2084aa4c230ef207091b4f17be0e357c5f1ee847046c12fce469"
            },
            "downloads": -1,
            "filename": "ai_alchemy-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "fdb344386c3dd756266d516f5e6d2735",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 5026,
            "upload_time": "2024-06-03T01:48:18",
            "upload_time_iso_8601": "2024-06-03T01:48:18.074681Z",
            "url": "https://files.pythonhosted.org/packages/e1/91/49505f1211289c4fc1b99530a1234bcebc79da984e5b322fedf9e18afd4e/ai_alchemy-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-03 01:48:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ai-alchemy"
}
        
Elapsed time: 0.39581s